

Modulhandbuch der Exportmodule

vom

Institut:

Chemie

Inhalt:

Abschlussarbeit (Lebensmittelchemie)		
Allgemeine, Anorganische und Organische Chemie im Nebenfach (AllgC-OC-N I)	Seite	6
Allgemeine, Anorganische und Organische Chemie im Nebenfach (AllgC-OC-N II)	Seite	8
Allgemeine Chemie		
Allgemeine und Anorganische Chemie im Nebenfach (AC-N IV)	Seite	13
Analytische Chemie (AnC)	Seite	15
Analytische Chemie im Nebenfach (AnC-N)	.Seite	17
Anorganische Chemie I (AC-I)	Seite	20
Anorganische Chemie II (AC-II) für Lebensmittelchemiker	Seite	22
Anorganische Chemie im Nebenfach (AC-N I)	Seite	24
Anorganische Chemie im Nebenfach (AC-N I)	Seite	27
Astrochemie, Wahlpflicht	.Seite	29
Bioorganische Chemie im Nebenfach (BioOC-N)	. Seite	32
Biophysikalische Chemie im Nebenfach (BioPC-N I)	.Seite	34
Charakterisierung von Nanostrukturen, Wahlpflicht	Seite	36
Chemical aspects in nanotechnology	Seite	39
Chemie im Nebenfach (AC-OC-N II)	Seite	41
Chemie im Nebenfach AC-OC-NII für Management natürlicher Ressourcen	.Seite	44
Chromatographie	Seite	46
Computerchemie, Wahlpflicht	Seite	48
Grüne und nachhaltige Bioorganische Chemie	Seite	51
Lebensmittelchemie	Seite	54
Lebensmittelchemische Exkursionen	Seite	56
Lebensmittelchemisches Praktikum 1	Seite	58
Lebensmittelchemisches Praktikum 2	Seite	60
Lebensmittelchemisches Praktikum 3	Seite	62
Lebensmittelchemisches Praktikum 4	Seite	64
Lebensmittelchemische Vorlesungen 1-6	.Seite	66
Lebensmittelrecht	Seite	68
Lebensmitteltechnologie I	Seite	70
Lebensmitteltechnologie II	Seite	72
Lebensmitteltechnologie II für Lebensmittelchemiker	.Seite	74
Lebensmittel- und Umweltanalytik	Seite	76
Naturstoffchemie im Nebenfach (NatC-N)	Seite	78
Nutzpflanzenkunde/Botanisches Praktikum und Abschluss Biologie	.Seite	80
Organische Chemie III (OC-III) für Lebensmittelchemiker	.Seite	82
Organische Chemie II (OC-II)	Seite	84
Organische Chemie im Nebenfach (OC-N)	Seite	87
Organische Chemie I (OC-I)	Seite	89
Organische Chemie und Naturstoffe im Nebenfach (OC-NatC-N)	Seite	91
Organische Chemie und Naturstoffe im Nebenfach (OC-NatC-N)	Seite	93
Physikalische Chemie für das Nebenfach III (PC-N III)	Seite	95
Physikalische Chemie für das Nebenfach II (PC-N II)	Seite	98
Physikalische Chemie für das Nebenfach I (PC-N I)	Seite	101
Physikalische Chemie für das Nebenfach IV (PC-N IV)	Seite	103
Physikalische Chemie für das Nebenfach V (PC-N V)	Seite	105

Physikalische Chemie für die Bioinformatik (PC-N VI)	Seite 107
Physikalische Chemie für die Biologie	Seite 109
Physikalische Chemie III (PC-III)	Seite 111
Physikalische Chemie II (PC-II) für Lebensmittelchemiker	Seite 114
Physikalische Chemie I (PC-I)	Seite 116
Polymere, Wahlpflicht	Seite 118
Qualitätssicherung 1 und 2	Seite 120
Qualitätssicherung 3	Seite 122
Quantenchemie, Wahlpflicht	Seite 124
Strukturanalytik	Seite 126
Technische Chemie für das Nebenfach II (TC-N II)	Seite 128
Technische Chemie für das Nebenfach I (TC-N I)	Seite 130
Technische Enzymologie	Seite 132
Theoretische Chemie (ThC)	Seite 134
Toxikologie und Rechtskunde	Seite 136
Umweltchemie	Seite 139
Zusatzmodul Lebensmittelchemie (Wahlpflicht)	Seite 142

Modul: Abschlussarbeit (Lebensmittelchemie)

Identifikationsnummer:

CHE.07980.01

Lernziele:

Mit der wissenschaftlichen Abschlussarbeit in Form einer Diplomarbeit sollen die Studierenden nachweisen, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist selbstständig unter Betreuung eine experimentelle Aufgabe aus den Gebieten der Lebensmittelchemie, der Futtermittel, der Tabakerzeugnisse, der Kosmetischen Mittel und sonstigen Bedarfsgegenstände oder aus dem Umweltbereich mit wissenschaftlichen Methoden erfolgreich zu bearbeiten.

Inhalte:

Der Inhalt der Diplomarbeit ist durch das jeweilige Thema aus den Gebieten der Lebensmittelchemie, der Futtermittel, der Tabakerzeugnisse, der Kosmetischen Mittel und sonstigen Bedarfsgegenstände oder aus dem Umweltbereich bestimmt

Alle Arbeiten und Ergebnisse sind in einem schriftlichen Bericht zu beschreiben und in einer mündlichen Leistung (Verteidigung) zu präsentieren.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Markus Glomb
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie Version 2023	1.	9.	Pflichtmodul	Fachnote	5/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Diplomarbeit	13	100	Winter- und
			Sommersemester
Mündliche Leistung	2	50	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote		
Diplomarbeit	Diplomarbeit nicht möglich laut 9		Diplomarbeit nicht möglich laut		90 %
		RStPOBM §20 Abs.13			
mündliche Leistung	mündliche Leistung	nicht möglich laut	10 %		
(Vortrag)	(Vortrag)	RStPOBM §20 Abs.13			

Termine für alle Modulteilleistungen:

1.Termin: im laufenden Semester1.Wiederholungstermin: im nächsten Semester

Modul: Allgemeine, Anorganische und Organische Chemie im Nebenfach (AllgC-OC-N I)

Identifikationsnummer:

CHE.03185.01

Moduluntertitel:

Teil I: Allgemeine und Anorganische Chemie Teil II: Organische Chemie

Lernziele:

- Grundkenntnisse in der Allgemeinen und Anorganischen sowie der Organischen und Naturstoffchemie
- Erlernen aktueller und grundlegender Konzepte der Allgemeinen und Organischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente

Inhalte:

Teil I:

- Gegenstand und Grundbegriffe der Chemie
- Atombau, Periodensystem der Elemente, Grundtypen der chemischen Bindung
- Erscheinungsformen der Materie
- Säuren und Basen, Salzlösungen
- Heterogene Gleichgewichte
- Oxidation und Reduktion, Metallkomplexe

Teil II:

- Nomenklatur organischer Verbindungen
- Reaktionsmechanismen
- Alkane, Cycloalkane, Alkene, Arene
- Organische Halogen-, Sauerstoff-, Schwefel- und Stickstoffverbindungen
- Carbonylverbindungen, Carbonsäuren und Derivate, mehrfunktionelle Verbindungen
- Konstitutions- und Stereoisomeriearten
- Praktikum: Nachweis funktioneller Gruppen, Grundreaktionen zu den Stoffklassen der Organischen Chemie, Grundlagen der Physik (Mechanik, Optik, Elektrizitätslehre

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. René Csuk
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 12.03.2010):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Biologie (Sekundarschule)	3.	Pflichtmodul	Fachnote	examens-
Sekundarschulen	1. Version 2007				relevant
Lehramt	Biologie (Gymnasium)	3.	Pflichtmodul	Fachnote	examens-
Gymnasien	1. Version 2007				relevant
Lehramt	Biologie (Sekundarschule)	3.	Pflichtmodul	Fachnote	examens-
Förderschulen	1. Version 2007				relevant

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil I und II	3	45	Wintersemester
Selbststudium	0	105	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder mündliche	Klausur oder mündliche	Klausur oder mündliche	100 %
Prüfung	Prüfung	Prüfung	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Allgemeine, Anorganische und Organische Chemie im Nebenfach (AllgC-OC-N II)

Identifikationsnummer:

CHE.02658.02

Moduluntertitel:

Teil I: Allgemeine und Anorganische ChemieTeil II: Organische ChemieTeil III: Ausgewählte Gebiete der Organischen und Naturstoffchemie

Lernziele:

- Grundkenntnisse in der Allgemeinen und Anorganischen sowie der Organischen und Naturstoffchemie
- Erlernen aktueller und grundlegender Konzepte der Allgemeinen und Organischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Einführung zur qualitativen und quantitativen Analyse

Inhalte:

Teil I:

- Gegenstand und Grundbegriffe der Chemie
- Atombau, Periodensystem der Elemente, Grundtypen der chemischen Bindung
- Erscheinungsformen der Materie
- Säuren und Basen, Salzlösungen
- Heterogene Gleichgewichte
- Oxidation und Reduktion, Metallkomplexe
- Praktikum: Qualitativer Nachweis ausgewählter Kationen und Anionen, Titrationsverfahren, Puffer

Teil II:

- Nomenklatur organischer Verbindungen
- Reaktionsmechanismen
- Alkane, Cycloalkane, Alkene, Arene
- Organische Halogen-, Sauerstoff-, Schwefel- und Stickstoffverbindungen
- Carbonylverbindungen, Carbonsäuren und Derivate, mehrfunktionelle Verbindungen
- Konstitutions- und Stereoisomeriearten
- Praktikum: Nachweis funktioneller Gruppen, Grundreaktionen zu den Stoffklassen der Organischen Chemie

Teil III:

- Heterocyclen
- Farbstoffe, Pharmaka, Tenside
- Niedermolekulare Naturstoffe
- Natürliche und synthetische makromolekulare Stoffe

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Annemarie Elisabeth Kramell
II Chemie, Physik und		
Mathematik		

$Studien programm verwend barkeit \ (Stand\ 17.07.2023):$

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Ernährungswissenschaften	1. bis 2.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2007				
Bachelor	Ernährungswissenschaften	1. bis 2.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2011				
Bachelor	Ernährungswissenschaften	1. bis 2.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil I und II	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Vorlesung zum Praktikum	1	15	Wintersemester
Praktikum	3	45	Wintersemester
Selbststudium	0	60	Wintersemester
Vorlesung Teil III	2	30	Sommersemester
Selbststudium	0	30	Sommersemester
Seminar Teil III	1	15	Sommersemester
Selbststudium	0	15	Sommersemester

Studienleistungen:

- Praktikum (im WiSe)
- Seminarvortrag (im SoSe)

Modulvorleistungen:

- keine

Modulteilleistungen:

Nr.	Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an
				Modulnote
1	Klausur (WiSe)	Klausur	Klausur	70 %
2	Klausur (SoSe)	Klausur	Klausur	30 %

Termine für Modulteilleistung Nr. 1:

1.Termin: am Ende der Vorlesung im WiSe bis Anfang Semesterpause

 $1. Wiederholungstermin:\ 2\ Monate\ nach\ Vorlesungsende\ bis\ sp\"{a}testens\ Semesteranfang\ SoSe/WiSe$

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Termine für Modulteilleistung Nr. 2:

1.Termin: am Ende der Vorlesung im SoSe bis Anfang Semesterpause

1. Wiederholungstermin: 2 Monate nach Vorlesungsende bis spätestens Semesteranfang SoSe/WiSe

2. Wiederholungstermin: bis spätestens 5 Monate nach Vorlesungsende

Modul: Allgemeine Chemie

Identifikationsnummer:

CHE.02870.02

Lernziele:

- Kenntnisse über fachliche Grundlagen der Allgemeinen Chemie und deren Anwendung
- Erkennen von Zusammenhängen zwischen Struktur und Eigenschaften ausgewählter chemischer Stoffe und Stoffgruppen, insbesondere der Nichtmetalle
- Berechnen stöchiometrischer Aufgaben und Konstanten
- experimentelle Fähigkeiten und Fertigkeiten in der Allgemeinen und Anorganischen Chemie
- Interpretieren von Experimentergebnissen

Inhalte:

Grundlagen der allgemeinen Chemie:

- Gegenstand der Chemie; Stöchiometrie
- Chemische Gleichgewichte
- Atombau
- Periodensystem der Elemente
- Grundtypen der chemischen Bindung; Strukturen einfacher Festkörper
- Praktikum zur Allgemeinen und Anorganischen Chemie

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Stefan Ebbinghaus
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 13.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Chemie (Sekundarschule)	1.	Pflichtmodul	Fachnote	erfolgreicher
Sekundarschulen	1. Version 2007				Abschluss
Lehramt	Chemie (Gymnasium) 1.	1.	Pflichtmodul	Fachnote	erfolgreicher
Gymnasien	Version 2007				Abschluss
Lehramt	Chemie (Sekundarschule)	1.	Pflichtmodul	Fachnote	erfolgreicher
Förderschulen	1. Version 2007				Abschluss
Bachelor	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	10/155
	Version 2012				
Bachelor*	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	10/155
	Version 2016				
Bachelor	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	10/155
	Version 2018				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	10/155
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Allgemeine Chemie	3	45	Wintersemester
Selbststudium	0	60	Wintersemester
Seminar Allgemeine Chemie	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Übungen Allgemeine Chemie	1	15	Wintersemester
Selbststudium	0	15	Wintersemester
Praktikum	4	60	Wintersemester
Selbststudium	0	45	Wintersemester

Studienleistungen:

- Praktikumsbericht und Einzeltestate

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: in der vorlesungsfreien Zeit nach Ende der Lehrveranstaltungen des Moduls
 1.Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters
 2.Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden Studienjahr

Hinweise:

Modulleistung: Art der Prüfung wird zu Beginn des Lehrabschnitts festgelegt

Modul: Allgemeine und Anorganische Chemie im Nebenfach (AC-N IV)

Identifikationsnummer:

CHE.02341.03

Lernziele:

- Grundkenntnisse der Allgemeinen und Anorganischen Chemie
- Erlernen aktueller und grundlegender Konzepte der Anorganischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente
- praktische und theoretische Kenntnisse in der Durchführung von Experimenten zur Allgemeinen und Anorganischen Chemie

Inhalte:

- Stöchiometrie
- Atombau, Periodensystem der Elemente, chemische Bindung
- Chemisches Gleichgewicht
- Säure-Base-Gleichgewichte
- Fällungsgleichgewichte
- Redoxgleichgewichte
- Chemie ausgewählter Hauptgruppenelemente
- Komplexbildung
- Ausgewählte Beispiele zur Chemie der 3d-Metalle
- Praktikum Allgemeine und Anorganische Chemie

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wouter Maijenburg
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.06.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Biochemie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/170
	Version 2007				
Bachelor*	Mathematik mit	3.	Wahlpflichtmodul	Fachnote	10/154
	Anwendungsfach 180 LP				
	1. Version 2006				
Bachelor*	Mathematik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	10/149
	Version 2013				
Bachelor	Biochemie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/151
	Version 2015				
Bachelor	Mathematik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	10/110
	Version 2022				
Bachelor	Biochemie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/154
	Version 2024				

* Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	90	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	60	Wintersemester
Praktikum	2	30	Wintersemester
Selbststudium	0	45	Wintersemester

Studienleistungen:

- Praktikumsprotokoll

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Analytische Chemie (AnC)

Identifikationsnummer:

CHE.05338.03

Lernziele:

- Darstellung und Verständnis der physikalisch-chemischen und instrumentellen Grundlagen verschiedener instrumenteller Analyseverfahren
- Beschreibung und Einordnung von Methoden zur Trennung, Detektion und Charakterisierung von Atomen, Ionen und Molekülen
- Auswahl geeigneter Methoden für verschiedene analytische Fragestellungen
- Darstellung ausgewählter praktischer Anwendungen verschiedener Analysemethoden
- Schilderung und Berechnung analytischer Kenngrößen

Inhalte:

- Grundlagen zur analytischen Chemie, zur Probenvorbereitung und zur Qualitätssicherung (Aufbau und Auswahl von Analyseverfahren, Kenngrößen zur quantitativen Analyse und Methodenvalidierung)
- Einführung in klassische Methoden der analytischen Chemie (Grundzüge und ausgewählte Anwendungen der Gravimetrie und Titrimetrie)
- Grundlagen, Aufbau und Anwendungen verschiedener instrumenteller Analysemethoden:
 - 1. Elektroanalytische Methoden (potentiometrischen Messungen)
 - 2. Massenspektrometrie (Ionisierungsmethoden, Analysatoren, Anwendungen)
 - 3. Molekülspektroskopie (Infrarot-, Kernspinresonanz-, UV/Vis- und Lumineszenzspektroskopie)
 - 4. Atomspektroskopie (Atomabsorptions- und Atomemissionspektroskopie)
 - 5. Chromatographische Trennverfahren (Hochleistungsflüssigkeitschromatographie, Ionenchromatographie, Gaschromatographie, Dünnschichtchromatographie)
 - 6. Kopplungstechniken

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	3.	Pflichtmodul	Fachnote	
	Version 2023				
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	Fachnote	5/168
	Version 2021				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	1	15	Wintersemester
Selbststudium	0	30	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	30	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Analytische Chemie im Nebenfach (AnC-N)

Identifikationsnummer:

CHE.05968.01

Lernziele:

- Grundlagen der Denk- und Arbeitsweise der Analytischen Chemie
- Konzepte und Strategien und Qualitätssicherung
- Analytische Nutzung chemischer und elektrochemischer Gleichgewichte
- Summenparameter (Auswahl)
- Methoden der Instrumentellen Analytischen Chemie
- Anorganische und organische Spurenanalytik

Inhalte:

- Grundlagen der Analytischen Chemie
- Qualitätssicherung
- Instrumentelle Analytische Chemie
- Konzentrationsanalytik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Management natürlicher	5.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2015				
Bachelor	Management natürlicher	5.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2018				
Bachelor	Management natürlicher	5.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2021				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Physik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	0/70
	Version 2009				
Master*	Angewandte	1. oder 3.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2015				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				

Master	Angewandte	1. oder 3.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2018				
Master	Physik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	0/70
	Version 2019				
Master	Angewandte	1. oder 3.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2021				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	1	15	Wintersemester
Selbststudium	0	30	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	30	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Anorganische Chemie I (AC-I)

Identifikationsnummer:

CHE.05344.04

Lernziele:

- Kenntnisse der grundlegenden Konzepte und Methoden der Anorganischen Chemie
- Erwerb von Basiskenntnissen zur Chemie der Nichtmetalle (Darstellung, Eigenschaften, Reaktionsverhalten)
- Anwendung des erlernten Wissens zur Lösung entsprechender Fragestellungen
- Praktische Fähigkeiten zur Planung, Durchführung und Auswertung von Laborexperimenten aus dem Bereich der Allgemeinen und Anorganischen Chemie

Inhalte:

Vorlesung

- Atomtheorie
- Stöchiometrie
- Elektronenstruktur der Atome (Aufbauprinzip, Elektronenkonfiguration, Orbitalmodell)
- Periodensystem der Elemente
- Chemische Bindung (Oktettregel, Lewis-Formeln, VSEPR-Modell, MO-Modell einfacher zweiatomiger Moleküle)
- Ionenverbindungen (Strukturtypen von AB und AB2-Verbindungen, Radienquotienten, Gitterenergie)
- Metalle (Dichteste Kugelpackungen, Strukturtypen, metallische Bindung)
- Chemisches Gleichgewicht (Säure/Base-, Löslichkeits- und Redoxgleichgewichte)
- Stoffchemie der Nichtmetalle

Praktikum

- Der Laborkurs umfasst ca. 60 experimentell zu bearbeitende Aufgaben aus der Allgemeinen und Anorganischen Chemie, z. B: Säure/Base-, Redox-, Fällungs- und Komplexbildungsgleichgewichte, Nachweisreaktionen für Kationen und Anionen, Durchführung qualitativer und quantitativer Analysen (Titrationen), Synthese von Präparaten

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Stefan Ebbinghaus
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	1.	Pflichtmodul	Fachnote	
	Version 2023				
Bachelor	Chemie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/168
	Version 2021				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	15	Wintersemester
Übung	1	15	Wintersemester
Selbststudium	0	15	Wintersemester
Praktikum	5	75	Wintersemester
Selbststudium	0	75	Wintersemester

Studienleistungen:

- Praktikumsbericht
- Testat (zwei Einzeltestate)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: in der vorlesungsfreien Zeit zwischen Winter- und Sommersemester

1. Wiederholungstermin: in der vorlesungsfreien Zeit zwischen Winter- und Sommersemester

2. Wiederholungstermin: zum nächsten regulären Prüfungstermin

Hinweise:

Der Staatsexamensstudiengang Lebensmittelchemie hat bei den Übungen 2 SWS Kontaktstudium.

Modul: Anorganische Chemie II (AC-II) für Lebensmittelchemiker

Identifikationsnummer:

CHE.08255.01

Lernziele:

- Kenntnisse in der Stoffchemie der Metalle (Hauptgruppenelemente und Übergangsmetalle), insbesondere Darstellung und Eigenschaften der Elemente und einfacher Verbindungen
- Grundwissen in der Komplexchemie (Nomenklatur von Komplexverbindungen, Komplexgleichgewichte, Struktur und Bindung)
- Anwendung von Komplexbildungsreaktionen in der Analytischen Chemie (Komplexo-metrische Titration)
- Praktische und theoretische Fähigkeiten bei der Planung und Durchführung von Laborexperimenten, insbesondere im Bereich der qualitativen Analyse von anorganischen Gemischen und der Herstellung von Präparaten, z. B. Elemente, Salze, Molekül- und Komplexverbindungen, anorganische Festkörperverbindungen)
- Kenntnisse in der fachwissenschaftlichen Präsentation von Versuchsergebnissen

Inhalte:

Vorlesung

- Stoffchemie der Metalle (Darstellung, Eigenschaften und Reaktionen)
- Grundlagen der Komplexchemie (Aufbau und Struktur von Komplexverbindungen, Bindungsverhältnisse, magnetische Eigenschaften, Komplexgleichgewichte, Komplexometrische Titration in der Analytischen Chemie)

Praktikum

- Durchführung qualitativer und quantitativer Analysen
- Synthese und Charakterisierung ausgewählter anorganischer Präparate

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Stefan Ebbinghaus
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 07.07.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	2.	Pflichtmodul	Fachnote	15/70
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Sommersemester
Selbststudium	0	60	Sommersemester
Übung	2	30	Sommersemester
Selbststudium	0	45	Sommersemester
Laborpraktikum	9	135	Sommersemester
Selbststudium	0	90	Sommersemester
Seminar	1	15	Sommersemester
nicht festlegbar	0	30	Sommersemester

Studienleistungen:

- Praktikumsbericht
- Testat (2 Einzeltestate)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: in der Vorlesungsfreien Zeit zwischen Sommersemester und

Wintersemester

1. Wiederholungstermin: zu Beginn des Wintersemesters

2. Wiederholungstermin: zum nächsten regulärem Prüfungstermin

Modul: Anorganische Chemie im Nebenfach (AC-N I)

Identifikationsnummer:

CHE.00840.04

Lernziele:

- Grundkenntnisse der Allgemeinen und Anorganischen Chemie
- Erlernen aktueller und grundlegender Konzepte der Anorganischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente

Inhalte:

- Stöchiometrie
- Atombau, Periodizität, chemische Bindung
- Energiebilanz chemischer Reaktionen
- Chemisches Gleichgewicht
- Fällungsreaktionen
- Säure-Base-Reaktionen
- Redoxreaktionen
- Chemie der Hauptgruppenelemente
- Komplexbildung
- Beispiele zur Chemie der 3d-Metalle

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	JProf. Dr. Wouter Maijenburg
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 14.12.2021):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor*	Geographie 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/125
	Version 2006				
Bachelor	Angewandte	1.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2006				
Bachelor	Physik 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/136
	Version 2006				
Bachelor*	Mathematik mit	3.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
	1. Version 2006				
Bachelor	Geographie 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/125
	Version 2011				
Bachelor	Physik 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/138
	Version 2012				

Bachelor*	Mathematik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/149
	Version 2013				
Bachelor	Angewandte	1.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2013				
Bachelor	Geographie 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/125
	Version 2013				
Bachelor	Geographie 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/125
	Version 2015				
Bachelor	Physik 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/137
	Version 2019				
Bachelor	Mathematik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/110
	Version 2022				
Bachelor (2-Fach)	Geographie 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/85
	Version 2006				
Bachelor (2-Fach)	Geographie 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/85
	Version 2011				
Bachelor (2-Fach)	Geographie 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/85
	Version 2013				
Bachelor (2-Fach)	Geographie 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/80
	Version 2015				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2012				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2015				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis Ende April

1. Wiederholungstermin: im anschließenden Sommersemester

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Anorganische Chemie im Nebenfach (AC-N I)

Identifikationsnummer:

CHE.03964.02

Lernziele:

- Grundkenntnisse der Allgemeinen und Anorganischen Chemie
- Erlernen aktueller und grundlegender Konzepte der Anorganischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente

Inhalte:

- Stöchiometrie
- Atombau, Periodizität, chemische Bindung
- Energiebilanz chemischer Reaktionen
- Chemisches Gleichgewicht
- Fällungsreaktionen
- Säure-Base-Reaktionen
- Redoxreaktionen
- Chemie der Hauptgruppenelemente
- Komplexbildung
- Beispiele zur Chemie der 3d-Metalle

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	JProf. Dr. Wouter Maijenburg
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 05.06.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/170
	Version 2007				
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/170
	Version 2015				
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/170
	Version 2021				
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/170
	Version 2024				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

 $2. Wiederholungstermin: \ bis \ sp\"{a}testens \ zur \ Modulpr\"{u}fung \ dieses \ Moduls \ im \ darauf \ folgenden$

Modul: Astrochemie, Wahlpflicht

Identifikationsnummer:

CHE.07163.01

Lernziele:

- Kenntnis und Verständnis der Entstehung von Elementen und Molekülen und vom Aufbau des Kosmos, der Sterne und Planeten
- Kenntnis und Verständnis der grundlegenden Konzepte zur Detektion von Materie (Molekülen) im Kosmos durch Wechselwirkung mit elektromagnetischer Strahlung (Spektroskopie)
- Fähigkeit zur Kombination von laborwissenschaftlich (physiko-chemischen) und durch Beobachtungen (astronomisch) gewonnenen Daten zum Verständnis der Entstehung und Selbstorganisation von kondensierter Materie

Inhalte:

- Einführung in die kosmologischen Grundlagen der Astrochemie: Urknall, Inflation, Expansion des Universums; kosmische Mikrowellenhintergrundstrahlung
- Diskussion von Energie und Entropie im kosmischen Kontext, Strukturbildung im Kosmos und in kondensierten chemischen Systemen
- Das dunkle Universum: dunkle und exotische Materie und dunkle Energie
- WIMPs, MACHOs und molekulare Kandidaten für dunkle Materie
- Spektroskopische, optische und gravitative Messmethoden und theoretische Modelle
- Zusammensetzung des interstellaren und intergalaktischen Mediums, kohlenstoffbasierte Materialien
- Kalte Molekülwolken, Sternentstehung, Sternarten und die Endstadien von Sternen
- Sterne: Klassifizierung und Beispiele, Hertzsprung-Russell-Diagramme
- Arten der Nukleosynthese: Entstehung der Elemente in Sternen und Supernovae
- Sonnensystem: Chemie der Planeten, Monde, Kleinplaneten, Asteroiden, Kometen: Aufbau, Entwicklung, Atmosphären
- Chemie der Extrasolaren Planeten
- Ursprung des Lebens und Astrobiologie; Chemische Evolution
- Entstehung und Detektion von Biomolekülen
 - Inhalte des Seminars:
- Besprechung aktueller wissenschaftlicher Fachpublikationen aus den Themengebieten der Astrochemie
- Demonstration weniger, ausgewählter Laborversuche zur astrochemisch relevanten Materialien
- Exkursion (z.B. Planetarium)

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2021				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Grundkenntnisse der Spektroskopie

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Astrochemie	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Seminar	1	15	Wintersemester
Selbststudium	0	45	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Nr.	Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an
				Modulnote
1	mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	2/3
	Klausur oder elektronische	Klausur oder elektronische	Klausur oder elektronische	
	Klausur	Klausur	Klausur	
2	Vortrag und Diskussion	Vortrag und Diskussion	Vortrag und Diskussion	1/3

Termine für Modulteilleistung Nr. 1:

1.Termin: vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im folgenden Studienjahr

Termine für Modulteilleistung Nr. 2:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im folgenden Studienjahr

Modul: Bioorganische Chemie im Nebenfach (BioOC-N)

Identifikationsnummer:

CHE.06539.01

Lernziele:

- Erweiterte Kenntnisse in der Bioorganischen und Supramolekularen Chemie
- Erlernen und Anwendung grundlegender Konzepte der Bioorganischen und Supramolekularen Chemie

Inhalte:

Bioorganische Chemie

- Molekulare Grundlagen wichtiger Stoffklassen (Kohlenhydrate, Fette, Proteine, Nucleinsäuren, sekundäre Metaboliten)
- Signalverstärkung und Signalverstärkungskaskaden
- Nachweisverfahren für kleine biochemische Metaboliten, funktionelle Enzyme und Proteine, virale Diagnostik

Supramolekulare Chemie

- Molekulare Erkennung von Kationen: Einflussgrößen, molekulare Chiralität, passiver und aktiver Ionentransport, Molekulare Schalter, Carrier- und Kanalsysteme
- Phasentransferkatalyse
- Erkennung von Anionen und Neutralmolekülen
- Calixarene, Carceranden, Dendrimere
- Selbstorganisation durch H-Bindungen, Nanostrukturen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. René Csuk
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Bioinformatik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/170
	Version 2018				
Bachelor	Bioinformatik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/170
	Version 2023				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Übung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Klausur (Vorbereitung)	0	45	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltung des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung diese Moduls im darauf folgenden

Modul: Biophysikalische Chemie im Nebenfach (BioPC-N I)

Identifikationsnummer:

CHE.06537.01

Lernziele:

- Heranführung an die Forschung auf dem Gebiet der Biophysikalischen Chemie
- Verständnis für experimentelles Arbeiten mit biophysikalischen Methoden
- Befähigung zur Gewinnung, Darstellung und Auswertung biophysikalischer Messdaten

Inhalte:

- Spezielle experimentelle Methoden der Biophysikalischen Chemie

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kirsten Bacia
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 24.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Bioinformatik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/170
	Version 2018				
Bachelor	Bioinformatik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/170
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	45	Wintersemester
Praktikum	3	45	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- Praktikumsprotokoll oder Ergebnispräsentation

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder	Klausur oder	Klausur oder	100 %
Antwort-Wahl-Klausur	Antwort-Wahl-Klausur	Antwort-Wahl-Klausur	
oder elektronische Klausur	oder elektronische Klausur	oder elektronische Klausur	
oder mündliche Prüfung	oder mündliche Prüfung	oder mündliche Prüfung	

Termine für die Modulleistung:

1.Termin: bis Ende des laufenden Semesters

1. Wiederholungstermin: frühestens 6 Wochen nach dem 1. Termin

2. Wiederholungstermin: nach Abschluss des nächsten inhaltsgleichen Moduls

Modul: Charakterisierung von Nanostrukturen, Wahlpflicht

Identifikationsnummer:

CHE.00032.04

Lernziele:

- Kenntnis und Verständnis der physikalisch-chemischen Grundlagen der wichtigsten Charakterisierungsmethoden für nanoporöse und nanoskalige Festkörper
- Anwendung des erlernten Wissens im praktischen Umgang mit verschiedenen Standardverfahren zur Charakterisierung (nano-)poröser und %u2013strukturierter Festkörper

Inhalte:

Vorlesung:

- Einführung (Was sind Nanostrukturen? Definitionen, Klassifizierung, Auswahl nanoporöser Materialien (Zeolithe, ALPO`s, Aktivkohle, poröse Gläser, Kieselgele, geordnete mesoporöse Materialien, Metallorganische Gerüststrukturen)
- Stickstoff-Tieftemperatur-Adsorption, Quecksilber-Intrusion, Heliumdichtemessungen, Molekülsondenmethode, Thermoporometrie (Messprinzipien, Auswertemethoden, Limitierungen)
- Stofftransport (Wicke-Kallenbach-Zelle, Permeabilität, katalytische Testreaktion)
- Oberflächeneigenschaften (Oberflächengruppen, Bestimmung (qualitativ, quantitativ), Oberflächenmodifizierungen)
- Weitere Charakterisierung von Katalysatoren und porösen Stoffen (Inverse Gaschromatographie, Röntgenweitwinkelstreuung, temperaturprogrammierte Adsorption/Desorption/Reduktion
- Grundlagen der Elektronenmikroskopie (Gerätetechnik und Abbildungsverfahren, ortsaufgelöste Materialanalytik)
- Optische Spektroskopie (Ramanmikroskopie, Ellipsometrie, Plasmonenresonanz)
- Rastersondenmethoden
- Theorie und Praxis der Röntgenkleinwinkelstreuung (RKWS) mit Anwendungen
- Einführung und Anwendungen der ortho-Positronium Lebensdauer-Spektroskopie (Phasenübergänge, Nanoporöse Festkörper, Polymere, Halbleiter)
 Praktikum:
- praktischer Umgang mit ausgewählten Charakterisierungsmethoden

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r	
Naturwissenschaftliche Fakultät	Chemie	JProf. Dr. Frederik Haase	
II Chemie, Physik und			
Mathematik			

Studienprogrammverwendbarkeit (Stand 04.02.2015):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Chemie (Gymnasium) 1.	5. oder 7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien	Version 2007				Abschluss
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2006				
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2013				

Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2021				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2009				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2012				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2015				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Praktikum	3	45	Wintersemester
Selbststudium	0	45	Wintersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

M	Modulhandbuch der Exportmodule vom Institut Chemie erstellt am 01.10.2024				
	Studienjahr				

Modul: Chemical aspects in nanotechnology

Identifikationsnummer:

CHE.08360.01

Lernziele:

- Die Studierenden sollen Kenntnisse in verschiedenen Bereichen chemischer Prozesse, die für die Herstellung von Nanostrukturen notwendig sind, erwerben, sowohl aus der anorganischen Chemie im Bereich der Ätzprozesse und Elektrodeposition als auch aus der organischen Chemie im Bereich der Resistchemie und Lithographie.
- Zusätzlich erlernen die Studierenden (übergreifend) die Chemie der Halbleiterdeposition aus der Gasphase.

Inhalte:

- Grundlagen der anorganischen Chemie
- Löslichkeit, Komplexbildung, nasschemisches Ätzen
- Gleichgewichtsreaktionen, Gasphasenabscheidung, reaktions und diffusionslimitiertes Wachstum
- Gasphasenreaktionen, Bildung flüchtiger Verbindungen und Reposition bei trockenchemischen Ätzprozessen
- Redoxreaktionen und elektrochemische Abscheidung aus der Lösung

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wouter Maijenburg
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 14.12.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Physik und	1.	Pflichtmodul	Fachnote	5/162
	Nanotechnologie 180 LP				
	1. Version 2024				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen S		Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Projektseminar	2	30	Wintersemester
Selbststudium	0	90	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	50 %
Klausur	Klausur	Klausur	
Seminarvortrag	Seminarvortrag	Seminarvortrag	50 %

Termine für alle Modulteilleistungen:

1.Termin: Prüfungszeitraum A

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Modul: Chemie im Nebenfach (AC-OC-N II)

Identifikationsnummer:

CHE.00168.04

Lernziele:

- Erlernen aktueller und grundlegender Konzepte der Anorganischen und Organischen Chemie
- Anwendung erlernter Konzepte auf ausgewählte Beispiele
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente
- Einführung in grundlegende Analysemethoden
- Grundkenntnisse der Allgemeinen und Anorganischen sowie Organischen und Bioorganischen Chemie

Inhalte:

- Aufbau der Materie (Atome, chemische Elemente, Moleküle, chemische Bindungen, heterogene Stoffgemische)
- Chemische Reaktionen (chemische Gleichungen, thermodynamische Grundlagen, Grundlagen der Kinetik,Säure-Base-Reaktionen, Puffer, Redoxreaktionen, Salze und komplexe Metalle)
- Chemisch-analytische Verfahren (elektromagnetische Strahlung, NMR-, Infrarot-, UV/VIS- und Massenspektroskopie)
- Aliphatische und aromatische Kohlenwasserstoffe
- Heterocyclen
- Alkohole, Phenole, Ether, Thiole, Thioether, Amine
- Aldehyde, Ketone, Chinone, Carbonsäuren und Derivate
- Stereochemie
- Aminosäuren und Peptide
- Kohlenhydrate
- Lipide
- Nucleinsäuren
- Polymere
- Nachweis funktioneller Gruppen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Martin Weissenborn
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 16.05.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
	LP 1. Version 2006				
Bachelor	Management natürlicher	1.	Pflichtmodul	Fachnote	10/160
	Ressourcen 180 LP 1.				
	Version 2006				

				1	
Bachelor	Angewandte	1.	Wahlpflichtmodul	Fachnote	10/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2006				
Bachelor	Physik 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	10/136
	Version 2006				
Bachelor*	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	10/160
	Version 2006				
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
	LP 1. Version 2011				
Bachelor	Physik 180 LP 1.	1.	Wahlpflichtmodul	Fachnote	10/138
	Version 2012				
Bachelor	Angewandte	1.	Wahlpflichtmodul	Fachnote	10/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2013				
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
	LP 1. Version 2013				10/1/0
Bachelor	Management natürlicher	1. bis 2.	Pflichtmodul	Fachnote	10/160
Bucheror	Ressourcen 180 LP 1.	1. 015 2.		T definiote	10,100
	Version 2013				
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
Bucheror	LP 1. Version 2015	•	Tinentinodai	1 demiote	10/1/0
Bachelor	Management natürlicher	1. bis 2.	Pflichtmodul	Fachnote	10/160
Bachelol	Ressourcen 180 LP 1.	1. 013 2.	Tinentinodai	1 acmote	10/100
	Version 2015				
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
Bachelol	LP 1. Version 2018	1.	Tinentinodai	1 acmote	10/1/0
Bachelor	Angewandte	1.	Pflichtmodul	Fachnote	10/160
Dacheloi	Geowissenschaften	1.	Finentinodui	Taciniote	10/100
	(Applied Geosciences)				
	180 LP 1. Version 2018				
Bachelor	Management natürlicher	1.	Pflichtmodul	Fachnote	10/160
Dacheloi	Ressourcen 180 LP 1.	1.	Finentinodui	racillote	10/100
Daabalaa	Version 2018	1.	Wahlpflichtmodul	Cashasta	0/137
Bachelor	Physik 180 LP 1.	1.	wampinchimodui	racillote	0/13/
Do aleala	Version 2019	1	Deli alatan i di di	En alareste	10/160
Bachelor	Angewandte	1.	Pflichtmodul	Fachnote	10/160
	Geowissenschaften				
	(Applied Geosciences)				
D11.	180 LP 1. Version 2021	1	DCI: 1.4 1.1	To all and	10/170
Bachelor	Agrarwissenschaften 180	1.	Pflichtmodul	Fachnote	10/170
3.6	LP 1. Version 2024	1	XXX 1.1 (0) 1 ()	D 1	10/100
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	10/100
7.7	LP 1. Version 2012			P 1	10/163
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	10/100
	LP 1. Version 2015				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung AC/OC-NII	3	45	Wintersemester
Übungen AC/OC-NII	2	30	Wintersemester
Vorbereitung zu den Übungen	0	45	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- erfolgreiches Absolvieren der Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis Ende April

1. Wiederholungstermin: frühestens 6 Wochen nach dem ersten Termin

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Die Vorlesung Organische Chemie wird durch den Bereich Organische Chemie abgesichert.

Modul: Chemie im Nebenfach AC-OC-NII für Management natürlicher Ressourcen

Identifikationsnummer:

CHE.07564.02

Lernziele:

- Grundkenntnisse der Allgemeinen und Anorganischen sowie Organischen Chemie
- Erlernen aktueller und grundlegender Konzepte der Anorganischen und Organischen Chemie
- Stoffchemie ausgewählter Haupt- und Nebengruppenelemente

Inhalte:

- Aufbau der Materie (Atome, chemische Elemente, Moleküle, chemische Bindungen, heterogene Stoffgemische)
- Chemische Reaktionen (chemische Gleichungen, thermodynamische Grundlagen, Grundlagen der Kinetik,Säure-Base-Reaktionen, Puffer, Redoxreaktionen, Salze und komplexe Metalle)
- Chemisch-analytische Verfahren (elektromagnetische Strahlung, NMR-, Infrarot-, UV/VIS- und Massenspektroskopie)
- Aliphatische und aromatische Kohlenwasserstoffe
- Heterocyclen
- Alkohole, Phenole, Ether, Thiole, Thioether, Amine
- Aldehyde, Ketone, Chinone, Carbonsäuren und Derivate
- Stereochemie
- Polymere

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Martin Weissenborn
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.06.2021):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Management natürlicher	1.	Pflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2021				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Übung	1	15	Wintersemester
Vorbereitung zu den Übungen	0	30	Wintersemester
Selbststudium	0	75	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis Ende April

1. Wiederholungstermin: frühestens 6 Wochen nach dem ersten Termin

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Die Vorlesung Organische Chemie wird durch den Bereich Organische Chemie abgesichert.

Modul: Chromatographie

Identifikationsnummer:

CHE.08011.01

Lernziele:

- Erwerb von Kenntnissen zur Chromatographie

Inhalte:

- Analytik der Lebensmittel, der Futtermittel, der Kosmetischen Mittel und sonstigen Bedarfsgegenstände, der Tabakerzeugnisse und des Wassers

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Christian Henning
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm		Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)		semester			Modulnote an
						Abschlussnote
Staatsprüfung	Lebensmittelchemie 1	1.	5.	Pflichtmodul	Fachnote	0/70
	Version 2023					

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Chromatographie	1	15	Wintersemester
Selbststudium	0	135	Wintersemester

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Vorlesung

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Computerchemie, Wahlpflicht

Identifikationsnummer:

CHE.00034.03

Lernziele:

- Vertiefung der Grundlagen der Quantenchemie, speziell in Bezug auf NMR-Spektren
- Erweiterung der chemischen und naturwissenschaftlichen Denkfähigkeiten "out of the box"
- Auf der Basis einer mächtigen und "gutmütigen" Programmiersprache (Mathematica) erlernen, selbstständig wissenschaftliche Probleme in Programme zu übersetzen, diese Programme zu optimieren, insbesondere in Hinblick auf die Ausführungsgeschwindigkeit und sie auszutesten
- Gewinnung von Erfahrungen mit verschiedenen Programmierstilen und -paradigmen

Inhalte:

Vorlesung

- Ausgewählte Elemente der Quantenmechanik der NMR-Spektroskopie, insbesondere Kommutatoralgebra und Spektrenberechnung
- Grundlagen der Programmierung: Interpreter- und Compilersprachen; maschinennahe und Hochsprachen; Befehle, Datentypen, Kontrollstrukturen, Funktionen und Unterprogramme; Umgang mit Syntax-, Laufzeit- und logischen Fehlern
- Programmierparadigmen: prozedurale, funktionale (listenbasierte), regelbasierte, und rekursive Programmierung
- Einführung in Mathematica: Sprachelemente, Programmierstile, Interaktivität
- Algorithmenerstellung, Geschwindigkeitsoptimierung, "intelligente" Programmierung
- Darstellung der spezifischen mathematischen, chemischen, und programmiertechnischen Grundlagen zu den einzelnen Übungsteilen Übung
- Heranführen an die Mathematica-Programmierung anhand einfacher Problemstellungen
- Geschwindigkeitsoptimierung: Programmierung einer Routine zur Messung von Laufzeiten; Experimente zum Vergleich der Ausführungsgeschwindigkeiten mit verschiedenen prozeduralen und funktionalen Algorithmen, z.B. bei der Bestimmung, ob eine gegebene (große) Matrix diagonal ist
- Rekursive Programmierung: Simulation von Diffusionsausflügen in unterschiedlicher Dimensionalität und mit verschiedenen Randbedingungen, Wiederbegegnungsstatistiken; Signalmittlung "on the fly" mit rekursiver Bestimmung von Mittelwerten und Standardabweichungen; Collatz-Probleme
- "Fibonacci on the fast track", Isomerenanzahlen der Fettsäuren; Ausblick auf die kombinatorische Chemie
- Regelbasierte Programmierung: Eliminierung von Mehrfachtreffern (z.B. in Datenbankrecherchen); "Run-length" Kodierung von Datenströmen; Zusammenführung überlappender Intervalle
- Symbolische Computeralgebra: Automatisches Herleiten der Eigenschaften von Spins aus den Vertauschungsrelationen
- Interaktivität: Erstellung eines Programms zur interaktiven Berechnung und Darstellung von H-NMR-Spektren in stark gekoppelten Spinsystemen mit bis zu 4 Protonen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Martin Goez
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Chemie (Gymnasium) 1.	5. oder 7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien	Version 2007				Abschluss
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2006				
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2013				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2009				
Master*	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2006				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Computerchemie	2	30	Wintersemester
Selbststudium	0	45	Wintersemester
Übung Computerchemie	3	45	Wintersemester
Selbststudium	0	30	Wintersemester

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Modul: Grüne und nachhaltige Bioorganische Chemie

Identifikationsnummer:

CHE.08208.01

Moduluntertitel:

Sustainable and green Bioorganic chemistry

Lernziele:

- Grundkenntnisse in den Prinzipien und Zusammenhängen der nachhaltigen Chemie: nachhaltige chemische Reaktionen, Einsatz umweltverträglicher Ausgangsstoffe, Prozesse und Endprodukte zur Vermeidung von Belastungen, Ressourcenschonung;
- Green Chemistry Parameter, Atomökonomie, Bioökonomie;
- Rechtliche und gesellschaftliche Aspekte, UN-, EU-Deklarationen;
- Präsentationstechniken, selbständige Arbeitsweise;
- Literatur- und Datenrecherche, Fachenglisch;
- Planung und Durchführung einfacher und gekoppelter enzymatischer Reaktionen;
- Erarbeitung und Verständnis für enzymatische Reaktionsmechanismen;
- Erwerb von Fachwissen über Parallelen und Unterschiede von organisch chemischer Synthese und enzymatischen Umsetzungen;
- Praktische Anwendung des Wissens in Biokatalytischen Reaktionen.

Inhalte:

- 1. Kurs I-InBT.1 Nachhaltige Chemie
 - TEIL 1: Fach-Methodenkompetenz Vorlesung
 - Grundprinzipien der nachhaltigen Chemie, Green Chemistry;
 - Naturstoffe, Geschlossene Stoffkreisläufe, Konzepte zur Vermeidung von Emissionen und Abfällen;
 - Nachwachsende Rohstoffe und Lösungsmittel, Bioraffination, Biomasse;
 - Wirkstoffe in Landwirtschaft, Nahrung, Kosmetik und Medizin;
 - Katalyse (heterogene Katalyse, homogene Katalyse, Organokatalyse, Biokatalyse);
 - Moderne Methoden.
 - TEIL 2: Handlungskompetenz (gesellschaftsrelevante, politische und strategische Kompetenzen) Seminar mit studentischen Vorträgen, öffentlich
 - Gesellschaftliche, politische, ökonomische und rechtliche Implikationen, Diskussion der Bundes-, EU-, US- und UN-Ansätze, u.a. Rio-Deklaration, Nagoya-Protokoll;
 - Einsatz nachhaltiger industrieller Verfahren; Verwendung nachhaltiger Ersatzstoffe;
 - Aspekte der Biotechnologie (incl. Gentechnologie);
 - Leistungen von Teil 2 können z.T. durch eventuelle Exkursion(en) erbracht werden.
- 2. Kurs I-InBT.2 Chemoenzymatik
 - Grundlagen zum Übergang von organischer zu lebender Materie;
 - Fachwissen über die verschiedenen Reaktionsmechanismen von Enzymen;
 - Gegenüberstellung von organisch-chemischen und enzymatischen Reaktionen;
 - Techniken zur Analyse von enzymatischen Umsetzungen;
 - Enzyme, die Gruppentransferreaktionen katalysieren;
 - Enzyme, die Oxidationen katalysieren;
 - Enzyme, die Reduktionen katalysieren;
 - Enzyme, die Hydroxylierungsreaktionen katalysieren.
- 3. Kurs I-InBT.3 Praktikum
 - Durchführung von enzymatischen Umsetzungen;

- Analytik mittels Gas Chromatographie oder HPLC %u2013 teilweise unter Verwendung einer Massenspektrometrischen Detektion;
- Üben vom Denken in Biotransformationen mit Bezug auf Löslichkeit von organischen Molekülen in Wasser und zu verwendenden Hilfsreagenzien;
- Einblicke in die Herstellung von Enzymen.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Martin Weissenborn, Prof. Dr.
II Chemie, Physik und		Ludger Wessjohann, Prof. Dr. Bernhard
Mathematik		Westermann

Studienprogrammverwendbarkeit (Stand 14.12.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Pharmaceutical and	3.	Wahlpflichtmodul	Fachnote	10/120
	Industrial Biotechnology				
	120 LP 1. Version 2016				
Master	Pharmaceutical and	3.	Wahlpflichtmodul	Fachnote	10/120
	Industrial Biotechnology				
	120 LP 1. Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Englisch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung I-InBT.1 Nachhaltige Chemie	5	75	Wintersemester
Vorlesung I-InBT.2 Chemoenzymatik	2	30	Wintersemester
Praktikum I-InBT.3 Praktikum	2	30	Wintersemester
Selbststudium	0	165	Wintersemester

- Antestat
- Protokoll

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: nach Vereinbarung, jeweils am Ende der Vorlesung im Wintersemester

 $1. Wiederholungstermin:\ nach\ Vereinbarung,\ 2\ Monate\ nach\ Vorlesungsende$

2. Wiederholungstermin: nach Vereinbarung, 5 Monate nach Vorlesungsende

Hinweise:

Texte auch in Englisch

Modul: Lebensmittelchemie

Identifikationsnummer:

CHE.02242.03

Lernziele:

- Grundlegendes Verständnis der Lebensmittelinhaltsstoffe auf molekularer Ebene
- Anwendung der Eigenschaften von Lebensmittelinhaltsstoffen auf die Herstellung und den Umgang mit Lebensmitteln
- Verständnis zur Herstellung und zur Zusammensetzung von Lebensmitteln
- Umgang mit rechtlichen Definitionen im Bereich biofunktioneller und gentechnisch veränderter Lebensmittel oder Lebensmittelinhaltsstoffe

Inhalte:

- Chemie, Biochemie und Analytik der Fette
- Chemie, Biochemie und Analytik der Kohlenhydrate
- Chemie, Biochemie und Analytik der Aminosäuren, Peptide und Proteine
- Ausgesuchte Beispiele fettreicher, kohlenhydratreicher und eiweißreicher Lebensmittel
- Ausgesuchte Beispiele lebensmitteltechnologischer Prozesse
- Veränderung der Inhaltstoffe beim Herstellen, Verarbeiten und Lagern von Lebensmitteln
- Chancen und Risiken neuartiger und gentechnisch veränderter Lebensmittel

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Marcus Glomb
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.07.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Ernährungswissenschaften	4. bis 5.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2007				
Bachelor	Ernährungswissenschaften	5. bis 6.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2011				
Bachelor	Ernährungswissenschaften	5. bis 6.	Pflichtmodul	Fachnote	10/160
	180 LP 1. Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul E 01 'Chemie'

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Winter- und
			Sommersemester
Übungsarbeiten	0	50	Wintersemester
Selbststudium	0	80	Winter- und
			Sommersemester
Prüfungsvorbereitung	0	80	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: am Ende des laufenden Sommersemesters

1. Wiederholungstermin: bis spätestens 2 Monate nach Beginn der Vorlesungszeit des folgenden

Semesters

2. Wiederholungstermin: nach Modulwiederholung am Ende der Vorlesungszeit des folgenden

Sommersemesters

Modul: Lebensmittelchemische Exkursionen

Identifikationsnummer:

CHE.08225.01

Lernziele:

Die Exkursionen dienen dem praxisnahem Vertiefen von Vorlesungsinhalten

Inhalte:

Besichtigung von mindestens 4 Industriebetrieben und Forschungseinrichtungen.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Marcus Glomb
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 05.06.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	5.	Pflichtmodul	keine	
	Version 2023			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

4 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Exkursion 1	0	38	Winter- und
			Sommersemester
Exkursion 2	0	37	Winter- und
			Sommersemester
Exkursion 3	0	38	Winter- und
			Sommersemester

Exkursion 4	0	37	Winter- und
			Sommersemester

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
erfolgreiche Teilnahme an 4	erfolgreiche Teilnahme an 4	erfolgreiche Teilnahme an 4	100 %
Exkursionen	Exkursionen	Exkursionen	

Termine für die Modulleistung:

1.Termin: nach Ende der 4. Exkursion

1. Wiederholungstermin: im nächsten Semester nach Ende der 4. Exkursion

2. Wiederholungstermin: nach Ende des nächsten Semesters

Modul: Lebensmittelchemisches Praktikum 1

Identifikationsnummer:

CHE.08003.01

Lernziele:

- Erwerb von praktischen Kenntnissen

Inhalte:

- Untersuchung und Beurteilung von Lebensmitteln, Kosmetischen Mitteln und sonstigen Bedarfsgegenständen und Tabakerzeugnissen
- chemisch-toxikologisches Praktikum

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Christian Henning
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an
						Abschlussnote
Staatsprüfung	Lebensmittelchemie	1.	5.	Pflichtmodul	Fachnote	0/70
	Version 2023					

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Wintersemester
Praktikum	12	120	Wintersemester

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %
Mikroskopisches Testat	Mikroskopisches Testat	Mikroskopisches Testat	0 %

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Lebensmittelchemisches Praktikum 2

Identifikationsnummer:

CHE.08005.01

Lernziele:

- Erwerb von praktischen Kenntnissen

Inhalte:

- Untersuchung und Beurteilung von Lebensmitteln, Kosmetischen Mitteln und sonstigen Bedarfsgegenständen und Tabakerzeugnissen
- chemisch-toxikologisches Praktikum

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Christian Henning
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	6.	Pflichtmodul	Fachnote	0/70
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	15	Sommersemester
Praktikum	12	120	Sommersemester
Übung	2	15	Sommersemester

- Praktikumsbericht
- Vortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Lebensmittelchemisches Praktikum 3

Identifikationsnummer:

CHE.08006.01

Lernziele:

- Erwerb von praktischen Kenntnissen

Inhalte:

- Untersuchung und Beurteilung von Lebensmitteln, Kosmetischen Mitteln und sonstigen Bedarfsgegenständen und Tabakerzeugnissen
- chemisch-toxikologisches Praktikum

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Thomas Heymann
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	7.	Pflichtmodul	Fachnote	0/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Wintersemester
Praktikum	12	120	Wintersemester

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Lebensmittelchemisches Praktikum 4

Identifikationsnummer:

CHE.08007.01

Lernziele:

- Erwerb von praktischen Kenntnissen

Inhalte:

- Untersuchung und Beurteilung von Lebensmitteln, Kosmetischen Mitteln und sonstigen Bedarfsgegenständen und Tabakerzeugnissen
- chemisch-toxikologisches Praktikum

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Thomas Heymann
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	8.	Pflichtmodul	Fachnote	0/70
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Sommersemester
Praktikum	12	120	Sommersemester

- Praktikumsbericht
- Vortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Lebensmittelchemische Vorlesungen 1-6

Identifikationsnummer:

CHE.08008.01

Lernziele:

Erwerb von Kenntnissen in der Lebensmittelchemie

Inhalte:

Vermittlung von Kenntnissen der chemischen Zusammensetzung, Gewinnung und Analytik, einschließlich der Interpretation von Messdaten mit mathematisch statistischen Methoden; chemische Veränderungen bei der Be- und Verarbeitung, der Lagerung und dem Transport dieser Produkte sowie über die pharmakologisch-toxikologische Wirkung ihrer normalen und anormalen Bestandteile.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Marcus Glomb
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 23.01.2023):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	5.	Pflichtmodul	Fachnote	10/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

4 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Lebensmittelchemie 1	4	60	Wintersemester
Übung Lebensmittelchemie 1	1	15	Wintersemester
Vorlesung Lebensmittelchemie 2	2	30	Sommersemester
Vorlesung Lebensmittelchemie 3	2	30	Sommersemester
Übung Lebensmittelchemie 3	1	15	Sommersemester
Vorlesung Lebensmittelchemie 4	2	30	Wintersemester
Übung Lebensmittelchemie 4	1	15	Wintersemester
Vorlesung Lebensmittelchemie 5	2	30	Sommersemester
Vorlesung Lebensmittelchemie 6	2	30	Sommersemester
Übung Lebensmittelchemie 6	1	15	Sommersemester
Selbststudium	0	30	nicht festlegbar

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: spätestens in 4 Wochen nach der Vorlesung Lebensmittelchemie 6

1. Wiederholungstermin: spätestens vor Beginn des darauf folgenden Semesters

2. Wiederholungstermin: spätestens am Ende des darauf folgenden Semesters

Modul: <u>Lebensmittelrecht</u>

Identifikationsnummer:

CHE.08014.01

Lernziele:

- Erwerb von Kenntnissen zum Lebensmittelrecht zur Anwendung

Inhalte:

- Grundlegende Kenntnisse in der Entwicklung des Lebensmittelrechts, im Verwaltungsrecht, in den allgemeinen nationalen und europäischen Rechtsvorschriften für Lebens- und Futtermittel, im Hygienerecht, im Zusatzstoffrecht, im Recht der Pflanzenschutzmittel, Rückstände und Kontaminaten, im Kosmetik- und Bedarfsgegenständerecht, und in speziellen nationalen und europäischen Rechtsvorschriften bestimmter Erzeugnisgruppen.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	HSL
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	7. bis 8.	Pflichtmodul	Fachnote	0/70
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Lebensmittelrecht 1	2	30	Wintersemester
Vorlesung Lebensmittelrecht 2	2	30	Sommersemester
Selbststudium	0	90	nicht festlegbar

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Vorlesung im Sommersemester

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: <u>Lebensmitteltechnologie I</u>

Identifikationsnummer:

CHE.07717.01

Lernziele:

Die Lehrveranstaltung soll Studierende in die Lage versetzen:

- bei der Lebensmittelherstellung verwendete mechanische, thermische oder biotechnologische Grundoperationen zu erklären
- zur Haltbarmachung von Lebensmitteln geeignete Methoden zu erläutern und auszuwählen
- die zur Herstellung verschiedener Lebensmittel benötigten Gerätschaften und Verfahrensabläufe zu beschreiben
- die Zusammenhänge zwischen der Lebensmittelverarbeitung und den Lebensmitteleigenschaften einzuschätzen

Inhalte:

- Definition und Aufgaben der Lebensmitteltechnologie
- Möglichkeiten zur Haltbarmachung von Lebensmitteln
- Obst & Gemüse: Lagerung, Verarbeitung & Haltbarmachung
- Saft & Wein
- Verarbeitung von Getreide zu Getreideerzeugnissen
- Getreideprodukte: Teigwaren, Backwaren, Bier

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.07.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	6.	Pflichtmodul	Fachnote	0/70
	Version 2023				
Bachelor	Ernährungswissenschaften	6.	Wahlpflichtmodul	Fachnote	5/160
	180 LP 1. Version 2011				
Bachelor	Ernährungswissenschaften	6.	Wahlpflichtmodul	Fachnote	5/160
	180 LP 1. Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Selbststudium	0	90	Sommersemester
Prüfungsvvorbereitung	0	30	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: am Ende des laufenden Semesters1.Wiederholungstermin: Beginn des nachfolgenden Semesters

2. Wiederholungstermin: nach Wiederholung des gesamten Moduls

Modul: Lebensmitteltechnologie II

Identifikationsnummer:

CHE.07718.01

Lernziele:

- bei der Lebensmittelherstellung verwendete mechanische, thermische oder biotechnologische Grundoperationen zu erklären
- zur Haltbarmachung von Lebensmitteln geeignete Methoden zu erläutern und auszuwählen
- die zur Herstellung verschiedener Lebensmittel benötigten Gerätschaften und Verfahrensabläufe zu beschreiben
- die Zusammenhänge zwischen der Lebensmittelverarbeitung und den Lebensmitteleigenschaften einzuschätzen

Inhalte:

- Spirituosen
- Zucker
- Pflanzliche Fette & Öle (Gewinnung & Modifikation)
- Grundlegendes zu Emulsionen
- Süßwaren
- Hydrokolloide
- Milch
- Milchprodukte: Käse, Butter, Speiseeis, fermentierte Milchprodukte
- Dauermilcherzeugnisse & Molkenprodukte
- Fleisch & Fleischerzeugnisse

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 25.07.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Ernährungswissenschaften	1.	Wahlpflichtmodul	Fachnote	5/120
	120 LP 1. Version 2020				
Master	Ernährungswissenschaften	1. oder 3.	Wahlpflichtmodul	Fachnote	5/160
	120 LP 1. Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	90	Wintersemester
Prüfungsvorbereitungen	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung 1. Wiederholung		2. Wiederholung	Anteil an Modulnote	
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %	
Klausur	Klausur	Klausur		

Termine für die Modulleistung:

1.Termin: am Ende des laufenden Semesters

1. Wiederholungstermin: Beginn des nachfolgenden Semesters

2. Wiederholungstermin: nach Wiederholung des gesamten Moduls

Modul: <u>Lebensmitteltechnologie II für Lebensmittelchemiker</u>

Identifikationsnummer:

CHE.08257.01

Lernziele:

- bei der Lebensmittelherstellung verwendete mechanische, thermische oder biotechnologische Grundoperationen zu erklären
- zur Haltbarmachung von Lebensmitteln geeignete Methoden zu erläutern und auszuwählen
- die zur Herstellung verschiedener Lebensmittel benötigten Gerätschaften und Verfahrensabläufe zu beschreiben
- die Zusammenhänge zwischen der Lebensmittelverarbeitung und den Lebensmitteleigenschaften einzuschätzen

Inhalte:

- Spirituosen
- Zucker
- Pflanzliche Fette & Öle (Gewinnung & Modifikation)
- Grundlegendes zu Emulsionen
- Süßwaren
- Hydrokolloide
- Milch
- Milchprodukte: Käse, Butter, Speiseeis, fermentierte Milchprodukte
- Dauermilcherzeugnisse & Molkenprodukte
- Fleisch & Fleischerzeugnisse

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 07.07.2023):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie	1.	7.	Pflichtmodul	Fachnote	5/70
	Version 2023					

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	90	Wintersemester
Prüfungsvorbereitungen	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	lleistung 1. Wiederholung		Anteil an Modulnote	
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %	

Termine für die Modulleistung:

1.Termin: am Ende des laufenden Semesters

1. Wiederholungstermin: Beginn des nachfolgenden Semesters

2. Wiederholungstermin: nach Wiederholung des gesamten Moduls

Modul: <u>Lebensmittel- und Umweltanalytik</u>

Identifikationsnummer:

CHE.08013.01

Lernziele:

- Erwerb von Kenntnissen zur Lebensmittel- und Umweltanalytik

Inhalte:

- Strategien und Methoden der Umweltanalytik (anorganische und organische instrumentelle Umweltanalytik, Summenparameter)
- chemisch-analytische Methoden der Erfassung toxischer Umweltchemikalien und Lebensmittelkontaminanten
- toxische Wirkungen auf das Ökosystem
- Prinzipien von epidemiologischen Erhebungen
- Risikoabschätzung und Festlegungen von Höchstmengen, Grenzwerten und Richtwerten

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie Version 2023	1.	6. bis 7.	Pflichtmodul	Fachnote	5/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Lebensmittel- und	2	30	Sommersemester
Umweltanalytik I			
Vorlesung Lebensmittel- und	2	30	Wintersemester
Umweltanalytik II			
Selbststudium	0	90	nicht festlegbar

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Vorlesung im Wintersemester

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Naturstoffchemie im Nebenfach (NatC-N)

Identifikationsnummer:

CHE.03181.02

Lernziele:

- Grundkenntnisse in der Chemie der Naturstoffe (Terpene, Fette, Proteine, Kohlenhydrate sowie ausgewählter Alkaloide)
- aus Naturstoffen abgeleitete Produkte des alltäglichen Lebens (Fasern, Farbstoffe, Tenside, Arzneimittel, Nachwachsende Rohstoffe)

Inhalte:

- Biosynthetische Basisreaktionen
- Terpene, Steroide; Aufbauprinzipien, biologische Bedeutung
- Fette, Öle, Wachse
- Kohlenhydrate; Mono, Di- und Polysaccharide; Aufbauprinzipien, biologische Bedeutung
- Aminosäuren, Peptide, Proteine; Strukturmerkmale, biologische Bedeutung
- Alkaloide; Heterocyclenchemie
- weitere aktuelle Naturstoffklassen (wechselnd: z. B. Polyketide)
- Fasermaterialien; Baumwolle, Wolle, Seide, Kunstfasern für Kleidung etc.
- Farbstoffe; Aufbauprinzipien, natürliche Vorbilder, industrielle Bedeutung
- Tenside; Wirkungsweise, Umweltgefährdung, Nachhaltigkeit
- Arzneimittel; Ausgewählte Kapitel aktueller Einsatzfelder: Antibiotika, AChE-Inhibitoren, Schmerzmittel, Cholesterin-Hemmer, Beta-Blocker etc.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Renè Csuk
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 20.01.2009):

Studiengang	Studienprogramm	Stuc	lien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	sem	ester			Modulnote an
						Abschlussnote
Master*	Bioinformatik 120 LP 1	. 1. bi	is 3.	Wahlpflichtmodul	Fachnote	15/120
	Version 2009					
Master*	Bioinformatik 120 LP 1	. 2.		Wahlpflichtmodul	Fachnote	15/120
	Version 2016					

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil I	2	30	Sommersemester
Selbststudium	0	60	Sommersemester
Praktikum	7	105	Wintersemester
Seminar zum Praktikum	2	30	Wintersemester
Vorlesung Teil II	2	30	Wintersemester
Vor- und Nachbereitung	0	90	Wintersemester
Selbststudium	0	60	Wintersemester
Klausur (Vorbereitung)	0	45	Wintersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder mündliche	Klausur oder mündliche	Klausur oder mündliche	100 %
Prüfung	Prüfung	Prüfung	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Nutzpflanzenkunde/Botanisches Praktikum und Abschluss Biologie

Identifikationsnummer:

CHE.08001.01

Lernziele:

- Vermittlung von Kenntnisse über Nutzpflanzen
- Fähigkeit zur Untersuchung von botanischen Objekten

Inhalte:

- Kenntnisse über die wichtigsten Nutzpflanzen (Morphologie, Bestimmungsmerkmale, pflanzensystematische Zuordnung, Inhaltsstoffe, Kulturgeschichte)
- Erwerb von botanischem Grundwissen zu tropisch und subtropisch verbreiteten Pflanzenfamilien
- Kenntnisvermittlung zur botanischen Nomenklatur und Systematik (einschl. der Kulturpflanzen)
- im Praktikum Mikroskopie von ausgewählten botanischen Objekten

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Heike Heklau / Dr. Martin Schattat
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 22.06.2023):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie Version 2023	1.	4.	Pflichtmodul	Fachnote	5/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Nutzpflanzenkunde	2	30	Sommersemester
Selbststudium	0	75	Sommersemester
Botanisches Praktikum	3	45	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- Klausur Nutzpflanzenkunde
- Testat Botanisches Praktikum

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: nach Ende der Vorlesungszeit

1.Wiederholungstermin: vor Beginn der Vorlesungszeit des folgenden Semesters2.Wiederholungstermin: nach Ende der Vorlesungszeit des folgenden Semesters

Modul: Organische Chemie III (OC-III) für Lebensmittelchemiker

Identifikationsnummer:

CHE.08103.01

Lernziele:

Erarbeitung der Grundlagen für die praktische Durchführung von ein- und mehrstufigen Synthesen, deren Planung, Auswertung und Analyse/Charakterisierung der Produkte sowie sicherer Umgang mit chemischen Gerätschaften und Chemikalien

- Fähigkeit zur Anwendung der Konzepte durch praktische Durchführung komplexer Synthesen unter besonderer Berücksichtigung metallorganischer, chemoenzymatischer, photochemischer sowie stereoselektiver Reaktionen, deren Planung, Auswertung und Analyse/Charakterisierung der Produkte, sicherer Umgang mit komplexen chemischen Gerätschaften
- Erarbeiten fachspezifischer Schlüsselqualifikationen (Präsentation wissenschaftlicher Ergebnisse, Recherche in organischen und bioorganischen Datenbanken)

Inhalte:

- Analytik unter Berücksichtigung physikalischer Trenn- und Messmethoden
- 2. Korrelationsdiagramme, Grenzorbitalbetrachtung, Theorie des aromatischen Übergangszustands
- 3. Übersicht über Radikalreaktionen, Startreaktion, Resonanzstabilisierung, Hyperkonjugation, polare Effekte, radikalische Polymerisation und wichtige radikalische Reaktionen
- 4. Aspekte der Syntheseplanung
 - Anwendung von Syntheseprinzipien zur Darstellung und Umwandlung organischer Moleküle

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Konstantin Amsharov
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 23.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	4.	Pflichtmodul	Fachnote	5/70
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Laborpraktikum OC III	12	150	Sommersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Die Teilnahme am Teil II des Praktikums setzt aus Gründen der Arbeitssicherheit den erfolgreichen Abschluss des ersten Teils voraus.

Modul: Organische Chemie II (OC-II)

Identifikationsnummer:

CHE.00022.04

Lernziele:

- Kenntnis und Verständnis grundlegender Reaktionsmechanismen am Beispiel von Carbonylverbindungen, heteroanalogen Carbonylverbindungen, Heterocyclen und Umlagerungsreaktionen
- Fähigkeit zur Anwendung der erlernten mechanistischer Konzepte zum Verständnis chemischer Reaktionen und deren Selektivität zur Lösung von Syntheseaufgaben
- Verständnis der grundlegenden Mechanismen chemischer Reaktionen in biologischen Stoffwechselprozessen
- Erwerb von wichtigen Stoffkenntnissen zu o.g. Stoffklassen (prinzipielle Labor- und industrielle Synthesemethoden, physikalische und chemische Eigenschaften, Umwelt- und Sicherheitsaspekte, Reaktionen, wichtige Anwendungen in Labor und Industrie)
- Fähigkeit zur Anwendung von MO Betrachtungen und Resonanzstrukturen
- Fähigkeit zur korrekten Anwendung der chemischen Nomenklatuprinzipien
- Erwerb grundlegender Kenntnisse zum stereochemischen Verlauf chemischer Reaktionen und deren Steuerung
- Erwerb grundlegender Kenntnisse der Syntheseplanung (Synthone, Umpolung, Schutzgruppen) und Anwendung heuristischer Konzepte (Vinylogie, Heteroanalogie, hart-weich Inkompatibilitäten, induktive und mesomere Effekte)

Inhalte:

Vorlesung

- Synthese und Reaktionen von Ketonen und Aldehyden mit O-,N-,S-Nucleophilen, Hydridionenüberträgern und Kohlenstoffnucleophilen und deren Katalyse
- Verständnis der Struktur und Reaktivität von Kohlenhydraten; die glycosidische Bindung und stereochemische Aspekte
- Synthese und Reaktionen a,ß-ungesättigter Carbonylverbindungen und das Vinylogiekonzept
- Anwendungen von Grenzorbitalbetrachtungen, Resonanzstrukturen, und des HSAB Konzept als Mittel zum Verständnis der Selektivität chemischer Reaktionen
- Stereochemische Aspekte des Angriffs an Mehrfachbindungssysteme (Trajektorien, Topizitäten, diastereomere Übergansgszustände, Prochiralität)
- Synthese und Reaktionen von Carbonsäuren und Carbonsäurederivaten, Kohlensäurederivaten und Heterocumulenen mit O,N,S-Nucleophilen, Hydridionenüberträgern und Kohlenstoffnucleophilen
- Prinzipien der Aminosäure- und Peptidsynthese; Aktivierung von Carbonsäuren im Labor und in Stoffwechselprozessen (Phosphate, CoA)
- Methoden der Reaktivitätsumpolung, Acyloinkondensation und Thiazoliumionenkatalyse
- Enole und Enolate; C-H Acidität, Keto-Enol Tautomerie und andere Prototopien, Synthese und Reaktionen der Enolate; Unterscheidung von Basen und Nucleophilen
- Aldolreaktionen und Esterkondensationen und ihre Bedeutung in Synthesen und in Stoffwechselprozessen
- Heteroanaloge Carbonylverbindungen: Imine, Enamine, Nitrile, Guanidin, Amidine, Heterocumulene, und Sulfonate; Reaktionen des Nitrosylkations und der Diazoalkane; 1,3-dipolare Cycloadditionen, Ozonolyse und Click Reaktionen
- Überblick über polare Umlagerungsreaktionen, deren Systematisierung und Anwendungen
- Syntheseplanung: Retrosynthese, Schutzgruppen, Synthone und Umpolung, ökonomische, toxikologische und Umweltaspekte in der Syntheseplanung
- Wichtige Heterocyclen, deren Nomenklatur, Synthese und biologische/therapeutische und materialwissenschaftliche Relevanz

Seminar

- Üben und Anwendung der in der Vorlesung vermittelten Konzepte, Reaktionsmechanismen und Zusammenhänge

- Erkennen von funktionellen Gruppen, deren Synthese und Reaktionen
- Praktische Übungen zur Anwendung von mechanistischen Betrachtungen und stereochemischen Fragestellungen
- Praktische Übungen zur Syntheseplanung unter Anwendung der in der Vorlesung besprochenen Reaktionen und Konzepte
- Training der Fähigkeit zur korrekten Anwendung der chemischen Nomenklatuprinzipien

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Bernhard Westermann
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	3.	Pflichtmodul	Fachnote	
	Version 2023				
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	Fachnote	5/168
	Version 2006				
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	Fachnote	5/168
	Version 2021				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Organische Chemie II	4	60	Wintersemester
Selbststudium Vorlesung	0	60	Wintersemester
Seminar Organische Chemie II	1	15	Wintersemester
Selbststudium Seminar	0	15	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

 $2. Wiederholungstermin: \ bis \ sp\"{a}testens \ zur \ Modulpr\"{u}fung \ dieses \ Moduls \ im \ darauf \ folgenden$

Modul: Organische Chemie im Nebenfach (OC-N)

Identifikationsnummer:

CHE.06538.02

Moduluntertitel:

Teil I: Organische Chemie; Teil II: Naturstoffe

Lernziele:

- Erkennen der Zusammenhänge zwischen molekularer Struktur, Bindungskräften, räumlicher Struktur, stofflichen Eigenschaften und Reaktivität
- Kennenlernen wichtiger Reaktionstypen, Stoffgruppen und technischer Herstellungsverfahren Kennenlernen der wichtigsten Naturstoffklassen und deren Bedeutung

Inhalte:

Teil I:

- Strukturen, Eigenschaften und Grundreaktionen der Stoffklassen in der Organischen Chemie
- Konstitutions- und Stereoisomeriearten
- Kohlenwasserstoffe: Alkane, Cycloalkane, Alkene, Diene, Alkine, Aromaten
- Verbindungen mit C-X-Einfachbindung: Halogenkohlenwasserstoffe, Alkohole, Phenole, Ether, Peroxide, Thiole, Sulfide, Amine, Hydroxylamine, Nitroverbindungen, Azo- und Diazoniumverbindungen
- Verbindungen mit C-X-Doppel- und Dreifachbindungen: Aldehyde, Ketone und Derivate, Carbonsäuren und Carbonsäurederivate Halogenide, Anhydride, Ester, Amide, Nitrile Teil II:
- Naturstoffe, Vorkommen und Bedeutung
- Ausgewählte Beispiele von Naturstoffen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Annemarie E. Kramell
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 29.04.2020):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Bioinformatik 180 LP 1.	1. bis 2.	Pflichtmodul	Fachnote	5/170
	Version 2018				
Bachelor*	Mathematik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/149
	Version 2013				
Bachelor	Mathematik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/110
	Version 2022				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil I OC	3	45	Wintersemester
Selbststudium	0	15	Wintersemester
Vorlesung Teil II Naturstoffe	1	15	Wintersemester
Seminar	2	30	Wintersemester
Klausur (Vorbereitung)	0	30	Wintersemester
Selbststudium	0	15	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur Teil I (Organische	Klausur	Klausur	75 %
Chemie)			
Klausur Teil II	Klausur	Klausur	25 %
(Naturstoffe)			

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende des Semesters

 $1. Wiederholungstermin: \ fr\"{u}hestens \ 6 \ Wochen \ nach \ dem \ 1. \ Termin$

2. Wiederholungstermin: nach Abschluss des nächsten inhaltsgleichen Moduls

Modul: Organische Chemie I (OC-I)

Identifikationsnummer:

CHE.00021.04

Lernziele:

- Fähigkeit, einfache organisch-chemische Reaktionen zu formulieren
- Wissen über Synthesestrategien einfacher und mehrstufiger Synthesen
- Wissen über die wichtigsten physikalisch-chemischen Eigenschaften organischer Moleküle auf Basis der vorhandenen funktionellen Gruppen
- Verständnis der grundlegenden Konzepte zum Aufbau von Kohlenstoffgerüsten und deren Funktionalisierung
- Verständnis der grundlegenden Reaktionsmechanismen organischer Reaktionen unter besonderer Berücksichtigung von funktionellen Gruppen
- Training der chemischen Denkfähigkeit, retrosynthetischer Analyse und der Fähigkeit zur Interdisziplinarität
- Erwerb von Techniken der Recherche in der chemischen Literatur und in Datenbanken
- Erwerb fundierten Wissens über die Planung instrumentalanalytischer Strukturbestimmungstechniken und Auswertung der Spektren

Inhalte:

- Überblick über die Prinzipien organischer Synthese am Beispiel wichtigster Reaktionen
- Überblick über die Synthese und Umwandlung funktioneller Gruppen
- Anwendung von Syntheseprinzpien zur Darstellung und Umwandlung organischer Moleküle
- Grundlagen der organisch-chemischen Nomenklatur, der Stereochemie und instrumental-analytischer Methoden zur Strukturbestimmung (NMR, IR, UV, MS,...)
- Synthese, Bedeutung, Reaktionen, Verwendung von Alkanen, Alkenen, Akinen, Alkoholen, Aminen, Aldehyden, Ketonen, Carbonsäuren (und-derivaten), konjugierten Dienen, Aromaten, konjugierten Aromaten und kleinen Heterocyclen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Martin Weissenborn
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	2.	Pflichtmodul	Fachnote	
	Version 2023				
Bachelor	Chemie 180 LP 1.	2.	Pflichtmodul	Fachnote	5/168
	Version 2006				
Bachelor	Chemie 180 LP 1.	2.	Pflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	2.	Pflichtmodul	Fachnote	5/168
	Version 2021				

Obligatorisch:

keine

Wünschenswert:

Module Anorganische Chemie I (AC-I) und Physikalische Chemie I (PC-I)

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	4	60	Sommersemester
Selbststudium	0	60	Sommersemester
Seminar	1	15	Sommersemester
Selbststudium	0	15	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Organische Chemie und Naturstoffe im Nebenfach (OC-NatC-N)

Identifikationsnummer:

CHE.06052.01

Lernziele:

- Erkennen der Zusammenhänge zwischen molekularer Struktur, Bindungskräften, räumlicher Struktur, stofflichen Eigenschaften und Reaktivität
- Kennenlernen wichtiger Reaktionstypen, Stoffgruppen und technischer Herstellungsverfahren
- Kennenlernen der wichtigsten Naturstoffklassen und deren Bedeutung

Inhalte:

- Modellvorstellungen in der organischen Chemie
- Struktur organischer Verbindungen
- Zusammenhang zwischen Struktur und chemisch-physikalischen Eigenschaften sowie Reaktivität,

Verlauf organischer Reaktionen

- Typen organischer Reaktionen
- Verbindungsklassen, ihre chemischen Eigenschaften und technische Herstellung
- Naturstoffe, Vorkommen und Bedeutung

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Annemarie E. Kramell
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 05.06.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	8/170
	Version 2015				
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	8/170
	Version 2021				
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	8/170
	Version 2024				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

240 Stunden

Leistungspunkte:

8 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil 1 - OC	3	45	Wintersemester
Vorlesung Teil 2 - Naturstoffe	1	15	Wintersemester
Selbststudium	0	40	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	20	Wintersemester
Praktikum	2	30	Wintersemester
Vor-und Nachbereitung	0	40	Wintersemester
Klausur (Vorbereitung)	0	20	Wintersemester

Studienleistungen:

- Praktikumsprotokolle

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur Grundlagen der	Klausur Grundlagen der	Klausur Grundlagen der	75 %
Organischen Chemie	Organischen Chemie	Organischen Chemie	
Klausur Naturstoffe	Klausur Naturstoffe	Klausur Naturstoffe	25 %

Termine für alle Modulteilleistungen:

1.Termin: bis Ende des laufenden Semesters nach erfolgreichem Abschluss des

Praktikums

1. Wiederholungstermin: frühestens 6 Wochen nach dem 1. Termin

2. Wiederholungstermin: nach Abschluss des nächsten inhaltsgleichen Moduls

Modul: Organische Chemie und Naturstoffe im Nebenfach (OC-NatC-N)

Identifikationsnummer:

CHE.02231.01

Lernziele:

- Erkennen der Zusammenhänge zwischen molekularer Struktur, Bindungskräften, räumlicher Struktur, stofflichen Eigenschaften und Reaktivität
- Kennenlernen wichtiger Reaktionstypen, Stoffgruppen und technischer Herstellungsverfahren
- Kennenlernen der wichtigsten Naturstoffklassen und deren Bedeutung

Inhalte:

- Modellvorstellungen in der organischen Chemie
- Struktur organischer Verbindungen
- Zusammenhang zwischen Struktur und chemisch-physikalischen Eigenschaften sowie Reaktivität,

Verlauf organischer Reaktionen

- Typen organischer Reaktionen
- Verbindungsklassen, ihre chemischen Eigenschaften und technische Herstellung
- Naturstoffe, Vorkommen und Bedeutung

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Ralph Kluge
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.07.2007):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Bachelor	Biologie 180 LP 1.	1.	Pflichtmodul	Fachnote	10/170
	Version 2007				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Teil 1 - OC	3	45	Wintersemester
Vorlesung Teil 2 - Naturstoffe	1	15	Wintersemester
Selbststudium	0	40	Wintersemester
Seminar	2	30	Wintersemester
Selbststudium	0	20	Wintersemester
Praktikum	2	30	Wintersemester
Vor-und Nachbereitung	0	40	Wintersemester
Klausur (Vorbereitung)	0	20	Wintersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur Grundlagen der	Klausur Grundlagen der	Klausur Grundlagen der	75 %
Organischen Chemie	Organischen Chemie	Organischen Chemie	
Klausur Naturstoffe	Klausur Naturstoffe	Klausur Naturstoffe	25 %

Termine für alle Modulteilleistungen:

1.Termin: bis Ende des laufenden Semesters nach erfolgreichem Abschluss des

Praktikums

1. Wiederholungstermin: frühestens 6 Wochen nach dem 1. Termin

2. Wiederholungstermin: nach Abschluss des nächsten inhaltsgleichen Moduls

Modul: Physikalische Chemie für das Nebenfach III (PC-N III)

Identifikationsnummer:

CHE.03183.02

Lernziele:

- Grundlagen der Chemischen Thermodynamik und deren Anwendung auf Reaktionsgleichgewichte
- Kenntnisse der Grundlagen der Elektrochemie
- Kenntnisse der Grundlagen der Physikalischen Chemie der Grenzflächen
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen
- Befähigung zur Gewinnung, Darstellung und Auswertung physikalisch-chemischer Messdaten

Inhalte:

- Grundlagen der Chemischen Thermodynamik der Reaktionsgleichgewichte und deren Abhängigkeiten von äußeren Parametern, Zusammenhang mit der Reaktionskinetik
- elektrochemische Gleichgewichte, Potentialmessungen, Batterien, Brennstoffzellen
- Physikalische Chemie der Grenzflächen, Kolloide
- Durchführung praktischer Versuche zur Reaktionsthermodynamik und zur physikalischen Chemie der Kolloide und Grenzflächen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 13.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Physik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/136
	Version 2006				
Bachelor*	Mathematik mit	3.	Wahlpflichtmodul	Fachnote	5/154
	Anwendungsfach 180 LP				
	1. Version 2006				
Bachelor	Physik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/138
	Version 2012				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	5/155
	Version 2012				
Bachelor*	Mathematik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/149
	Version 2013				
Bachelor*	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	5/155
	Version 2016				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	5/155
	Version 2018				
Bachelor	Physik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	0/137
	Version 2019				

Bachelor	Mathematik 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/110
	Version 2022				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	5/155
	Version 2023				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2012				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2015				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Selbststudium	0	45	Wintersemester
Praktikum	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modulha	Modulhandbuch der Exportmodule vom Institut Chemie erstellt am 01.10.2024			
	Studienjahr			

Modul: Physikalische Chemie für das Nebenfach II (PC-N II)

Identifikationsnummer:

CHE.00123.02

Lernziele:

- Einarbeitung in die Grundlagen der Thermodynamik und in deren Anwendung auf Phasengleichgewichte und Reaktionsgleichgewichte sowie Einführung in die Grundlagen der Kinetik
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen und Befähigung zur Lösung entsprechender Rechenaufgaben
- Erlernen der Bedienung von Messgeräten
- Befähigung zur Gewinnung, Darstellung und Auswertung physikalisch-chemischer Messdaten

Inhalte:

- Ideale und reale Gase, Grundlagen der Thermodynamik, Phasengleichgewichte, Reaktionsgleichgewichte, Chemische Kinetik
- Durchführung praktischer Versuche zur Thermodynamik und zur chemischen Kinetik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kirsten Bacia
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 13.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Management natürlicher	2.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2006				
Bachelor	Biologie 180 LP 1.	2.	Pflichtmodul	Fachnote	5/170
	Version 2007				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	5/155
	Version 2012				
Bachelor	Angewandte	2.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2006				
Bachelor	Angewandte	2.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2013				
Bachelor	Management natürlicher	2.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2013				

Bachelor	Management natürlicher	2.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2015				
Bachelor*	Informatik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	Version 2016				
Bachelor	Angewandte	2.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2018				
Bachelor	Management natürlicher	2.	Wahlpflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2018				
Bachelor	Informatik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	Version 2018				
Bachelor	Angewandte	2.	Wahlpflichtmodul	Fachnote	5/160
	Geowissenschaften				
	(Applied Geosciences)				
	180 LP 1. Version 2021				
Bachelor	Informatik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Sommersemester
Selbststudium	0	30	Sommersemester
Seminar	1	15	Sommersemester
Selbststudium	0	10	Sommersemester
Praktikum	2	30	Sommersemester
Selbststudium	0	20	Sommersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie für das Nebenfach I (PC-N I)

Identifikationsnummer:

CHE.03186.01

Lernziele:

- Einarbeitung in die Grundlagen der Stoffeigenschaften von Materie in verschiedenen Aggregatzuständen
- Anwendung der in den Vorlesungen vermittelten Kenntnisse auf theoretische Fragestellungen in den Rechenübungen
- Erlernen von physikalischen Meßmethoden
- Erlernen der Fähigkeiten physikalisch-chemische Messdaten zu gewinnen, darzustellen und zu analysieren

Inhalte:

- Aggregatzustände, Phasenübergänge, Stoffeigenschaften
- Grundlagen der Thermodynamik
- Lösungen, Mischungen, Phasengleichgewichte
- Grenz- und Oberflächenspannungen
- Kinetik
- Kolloide und Makromolekulare Systeme
- Zusammenfassung, Klausurvorbereitung

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Jörg Kreßler
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 13.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/155
	Version 2012				
Bachelor*	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/155
	Version 2016				
Bachelor	Informatik 180 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/155
	Version 2018				
Bachelor	Informatik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	5/155
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Selbststudium	0	30	Sommersemester
Übung	0,27	15	Sommersemester
Selbststudium	0	20	Sommersemester
Praktikum	2	30	Sommersemester
Selbststudium	0	25	Sommersemester

Studienleistungen:

- erfolgreicher Abschluss eines schriftlichen Testats
- erfolgreicher Abschluss des Praktikums (einschließlich eines mündlichen Testats am Ende des Praktikums)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: zu Beginn der vorlesungsfreien Zeit zwischen Sommer- und Wintersemester

1. Wiederholungstermin: in der vorlesungsfreien Zeit zwischen Sommer- und Wintersemester

2. Wiederholungstermin: am Ende der vorlesungsfreien Zeit zwischen Sommer- und Wintersemester

Modul: Physikalische Chemie für das Nebenfach IV (PC-N IV)

Identifikationsnummer:

CHE.02348.02

Lernziele:

- Einarbeitung in die Grundlagen der Thermodynamik und in deren Anwendung auf Phasengleichgewichte und Reaktionsgleichgewichte sowie Einführung in die Grundlagen der Kinetik
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen und Befähigung zur Lösung entsprechender Rechenaufgaben
- Erlernen der Bedienung von Messgeräten
- Befähigung zur Gewinnung, Darstellung und Auswertung physikalischchemischer Messdaten

Inhalte:

- ideale und reale Gase, Grundlagen der Thermodynamik, Phasengleichgewichte, Reaktionsgleichgewichte, Chemische Kinetik
- Durchführung praktischer Versuche zur Thermodynamik und zur chemischen Kinetik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kirsten Bacia
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.06.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Biochemie 180 LP 1.	2.	Pflichtmodul	Fachnote	8/170
	Version 2007				
Bachelor*	Mathematik mit	4.	Wahlpflichtmodul	Fachnote	8/154
	Anwendungsfach 180 LP				
	1. Version 2006				
Bachelor	Informatik 180 LP 1.	3. oder 5.	Wahlpflichtmodul	Fachnote	8/155
	Version 2012				
Bachelor*	Mathematik 180 LP 1.	4.	Wahlpflichtmodul	Fachnote	8/149
	Version 2013				
Bachelor	Biochemie 180 LP 1.	2.	Pflichtmodul	Fachnote	8/151
	Version 2015				
Bachelor*	Informatik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	8/155
	Version 2016				
Bachelor	Mathematik 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Fachnote	8/110
	Version 2022				
Bachelor	Biochemie 180 LP 1.	2.	Pflichtmodul	Fachnote	8/154
	Version 2024				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

Modul `Mathematik C` und Modul `Experimentalphysik Export C / exphys_E_C`

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

240 Stunden

Leistungspunkte:

8 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Sommersemester
Selbststudium	0	45	Sommersemester
Seminar	2	30	Sommersemester
Selbststudium	0	30	Sommersemester
Praktikum	4	60	Sommersemester
Selbststudium	0	30	Sommersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie für das Nebenfach V (PC-N V)

Identifikationsnummer:

CHE.04237.01

Lernziele:

- Vertiefung der Ausbildung auf den Gebieten Thermodynamik, Spektroskopie, Grenzflächen und Kolloide bzw. Flüssigkristalle sowie der biophysikalischen Chemie
- Erkennen von Struktur-Eigenschafts-Beziehungen durch Modellbetrachtungen
- Erkennen von Möglichkeiten für technische Anwendungen

Inhalte:

- Mischphasenthermodynamik
- biophysikalische Chemie: Proteine, Nukleinsäuren, Polysaccharide, Lipide
- biophysikalische Messmethoden
- thermotrope und lyotrope Flüssigkristalle
- Grenzflächen- und Kolloidchemie
- optische und spektroskopische Messverfahren

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master*	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	10/120
	Version 2006				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	10/120
	Version 2013				
Master	Informatik 120 LP 1.	1. bis 2.	Wahlpflichtmodul	Fachnote	10/120
	Version 2013				
Master	Informatik 120 LP 1.	1. bis 2.	Wahlpflichtmodul	Fachnote	10/120
	Version 2016				
Master	Informatik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	10/120
	Version 2023				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung PC-M Ia oder Ib	2	30	Wintersemester
Vorlesung PC-M II	2	30	Wintersemester
Selbststudium	0	140	Wintersemester
Vorlesung PC-M III	2	30	Sommersemester
Selbststudium	0	70	Sommersemester

Studienleistungen:

- schriftliche Testate zu den Vorlesungen PC-M Ia bzw. PC-M Ib, PC-M II und PC-M III

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie für die Bioinformatik (PC-N VI)

Identifikationsnummer:

CHE.06536.01

Lernziele:

- Einarbeitung in die Grundlagen der Thermodynamik und in deren Anwendung auf Phasengleichgewichte und Reaktionsgleichgewichte sowie Einführung in die Grundlagen der Kinetik
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen und Befähigung zur Lösung entsprechender Rechenaufgaben

Inhalte:

- Ideale Gase, Grundlagen der Thermodynamik, Phasengleichgewichte, Reaktionsgleichgewichte, chemische Kinetik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kirsten Bacia
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 24.01.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Bioinformatik 180 LP 1.	4.	Pflichtmodul	Fachnote	5/170
	Version 2018				
Bachelor	Management natürlicher	2.	Pflichtmodul	Fachnote	5/160
	Ressourcen 180 LP 1.				
	Version 2021				
Bachelor	Bioinformatik 180 LP 1.	2.	Pflichtmodul	Fachnote	5/170
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Sommersemester
Selbststudium	0	45	Sommersemester
Seminar	1	15	Sommersemester
Selbststudium	0	45	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder	Klausur der	Klausur der	100 %
Antwort-Wahl-Klausur	Antwort-Wahl-Klausur	Antwort-Wahl-Klausur	
oder elektronische Klausur	oder elektronische Klausur	oder elektronische Klausur	
oder mündliche Prüfung	oder mündliche Prüfung	oder mündliche Prüfung	

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie für die Biologie

Identifikationsnummer:

CHE.06059.02

Lernziele:

- Einarbeitung in die Grundlagen der Thermodynamik und in deren Anwendung auf Phasengleichgewichte und Reaktionsgleichgewichte sowie Einführung in die Grundlagen der Kinetik
- Anwendung der in der Vorlesung erworbenen theoretischen Kenntnisse auf physikalisch-chemische Problemstellungen und Befähigung zur Lösung entsprechender Rechenaufgaben
- Erlernen der Bedienung von Messgeräten
- Befähigung zur Gewinnung, Darstellung und Auswertung physikalisch-chemischer Messdaten

Inhalte:

- Ideale und reale Gase, Grundlagen der Thermodynamik, Phasengleichgewichte, Reaktionsgleichgewichte, Chemische Kinetik
- Durchführung praktischer Versuche zur Thermodynamik und zur chemischen Kinetik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kirsten Bacia
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 05.06.2024):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Biologie 180 LP 1.	2.	Pflichtmodul	Fachnote	7/170
	Version 2015				
Bachelor	Biologie 180 LP 1.	2.	Pflichtmodul	Fachnote	7/170
	Version 2021				
Bachelor	Biologie 180 LP 1.	2.	Pflichtmodul	Fachnote	7/170
	Version 2024				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

210 Stunden

Leistungspunkte:

7 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Physikalische Chemie	3	45	Sommersemester
Selbststudium	0	45	Sommersemester
Seminar Physikalische Chemie	1	15	Sommersemester
Selbststudium	0	15	Sommersemester
Praktikum Physikalische Chemie	2	30	Sommersemester
Selbststudium	0	30	Sommersemester
Übung Mathematische Methoden der	1	15	Sommersemester
Physikalischen Chemie			
Selbststudium	0	15	Sommersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur oder	Klausur oder	Klausur oder	100 %
Antwort-Auswahl-Klausur	Antwort-Auswahl-Klausur	Antwort-Auswahl-Klausur	
oder mündliche Prüfung	oder mündliche Prüfung	oder mündliche Prüfung	

Termine für die Modulleistung:

1.Termin: bis spätestens sechs Wochen nach Ende der Lehrveranstaltungen des

Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie III (PC-III)

Identifikationsnummer:

CHE.05349.03

Lernziele:

- Kenntnis und Verständnis der grundlegenden Konzepte der Spektroskopie und der Wechselwirkungen von Materie (Molekülen) mit elektromagnetischer Strahlung;
- Fähigkeit zur Anwendung der Konzepte auf die Gewinnung physikalisch-chemischer Messgrößen
- Anwendung des erlernten Wissens zur Lösung entsprechender Rechenaufgaben
- Erwerb von grundlegenden Kenntnissen und Fähigkeiten im experimentellen Arbeiten und der theoretisch-fundierten Analyse in den genannten Themenbereichen
- Techniken der Erfassung, Verarbeitung und Visualisierung von physikalisch-chemischen Messdaten, fachwissenschaftliche Präsentation eigener Versuchsergebnisse

Inhalte:

Vorlesung

- Einführung: Grundprinzipien der Spektroskopie, Wechselwirkungen von Molekülen und elektromagnetischer Strahlung; Quantenmechanische Beschreibung der Spektroskopie; Intermolekulare Wechselwirkungen und molekulare Selbstanordnung
- Elektronenanregungsspektroskopie: UV-Vis-Spektroskopie, Untersuchung der elektronischen Struktur der Moleküle
- Fluoreszenzspektroskopie; Effekte der Lösemittelumgebung auf Absorptions- und Fluoreszenzspektren; Born-Oppenheimer-Näherung, Jablonski-Schema zur Elektronenanregung; vertikale Übergänge (Franck-Condon-Prinzip); Phosphoreszenz; Quenching (Auslöschung) der Fluoreszenz, Stern-Volmer-Experimente
- Rotationsspektroskopie (Mikrowellenspektroskopie), insbesondere Analyse mit dem Modell des starren Rotators
- Schwingungsspektroskopie (Infrarot-, Raman-Spektroskopie), Analyse mit dem Modell des harmonischen und anharmonischen Oszillators
- Rotationsschwingungsspektroskopie
- (Kern)Magnetische Resonanzspektroskopie (NMR, Radiowellen); Einführung des Spins; Stern-Gerlach Experiment; magnetisches Moment; Zeeman-Effekt; dipolare Kopplung zwischen Spins; chemische Verschiebung; Einführung in multidimensionale NMR Praktikum
- Nutzung physikochemischer Messgeräte
- Durchführung fortgeschrittener praktischer Versuche zur Thermodynamik, Grenzflächenchemie und Spektroskopie
- Fehlerrechnung und Statistik, Regression, wissenschaftliches Protokollieren, computergestützte Darstellung und Auswertung von Messergebnissen (v.a. in Origin)

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Chemie 180 LP 1.	6.	Pflichtmodul	Fachnote	10/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	4. bis 5.	Pflichtmodul	Fachnote	10/168
	Version 2021				
Master	Mathematik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	10/120
	Version 2013				
Master	Mathematik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Modul Experimentalphysik Export C, Modul Mathematik C

Dauer:

2 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung PC-III	3	45	Sommersemester
Übung PC-III	1	15	Sommersemester
Selbststudium	0	50	Sommersemester
Praktikum PC-III	5	75	Wintersemester
Seminar zum Praktikum PC-III	1	15	Wintersemester
Selbststudium	0	100	Wintersemester

Studienleistungen:

- 2 bis 4 Testate zum Praktikum PC-III
- Seminarvortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie II (PC-II) für Lebensmittelchemiker

Identifikationsnummer:

CHE.08104.01

Lernziele:

- Einarbeitung in die Grundlagen der Elektrochemie und der Kinetik
- Anwendung der in den Vorlesungen vermittelten Kenntnisse auf theoretische Fragestellungen
- Erlernen der Bedienung von Messgeräten
- Erlernen der Fähigkeiten, physikalisch-chemische Messdaten zu gewinnen, darzustellen und zu analysieren

Inhalte:

- Grundlagen der Theorie der Elektrochemie, elektrochemische Potenziale, Eigenschaften von Elektrolytlösungen, elektrochemische Reaktionen, Zellspannung, elektromotorische Kräfte, Elektrolyse, elektrochemische Energiequellen, moderne Anwendungen der Elektrochemie (Batterien und Brennstoffzellen)
- Reaktionskinetik, einfache differenzielle und integrierte Zeitgesetze, Gleichgewichtsreaktionen, komplexe Reaktionen, Aktivierungsenergie und Arrhenius-Gleichung, ausgewählte Reaktionsmechanismen, homogene und heterogene Katalyse, Enzymkatalyse
- Durchführung praktischer Versuche zur Elektrochemie und Reaktionskinetik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Jörg Kreßler
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 24.01.2023):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	2.	Pflichtmodul	Fachnote	10/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Physikalische Chemie II	3	45	Sommersemester
Übung	2	30	Sommersemester
Praktikum Physikalische Chemie II	8	120	Wintersemester
Selbststudium	0	105	Winter- und
			Sommersemester

Studienleistungen:

- Praktikumstestat

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie I (PC-I)

Identifikationsnummer:

CHE.05347.02

Lernziele:

- Kenntnis und Verständnis grundlegender thermodynamischer Zusammenhänge
- Anwendung des erlernten Wissens zur Lösung entsprechender Rechenaufgaben
- Grundlegende Fähigkeit zur Einschätzung thermodynamischer Systeme und Sachverhalte

Inhalte:

- Einführung in das Modell des idealen Gases und Näherungen des realen Gases (z.B. van-der-Waals-Gas)
- Die Hauptsätze der Thermodynamik: Einführung der Begriffe Energie-Enthalpie-Entropie
- Konzept der totalen Differentiale der Thermodynamik: Infinitesimale und makroskopische Änderungen, reversible und irreversible Prozesse
- Thermochemie: Satz von Hess, Kirchhoffsche Regel
- Verbindung zwischen totalen Differentialen und Zustandsänderungen
- Einführung des chemischen Potentials
- Thermodynamik von Phasengleichgewichten: Phasendiagramme, Phasenübergänge und kolligative Eigenschaften

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Sebastiani
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	1.	Pflichtmodul	Fachnote	
	Version 2023				
Bachelor	Chemie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	1.	Pflichtmodul	Fachnote	5/168
	Version 2021				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung PC I	3	45	Wintersemester
Selbststudium	0	30	Wintersemester
Übung PC I	2	30	Wintersemester
Selbststudium zur Übung	0	45	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder elektronische	Klausur oder elektronische	Klausur oder elektronische	
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

 $2. Wiederholungstermin: \ bis \ sp\"{a}testens \ zur \ Modulpr\"{u}fung \ dieses \ Moduls \ im \ darauf \ folgenden$

Modul: Polymere, Wahlpflicht

Identifikationsnummer:

CHE.00033.01

Lernziele:

- Kenntnisse der Chemie der Polymere, insbesondere der Struktur, chemischer und physikalische Prinzipien beim Polymeraufbau (Polymerisationschemie, Polymerisationskinetik, Kettenstatistik), chemische Synthese und Herstellung von Polymeren (radikalische Polymerisation, ionische Polymerisation, Polykondensation), Chemie der Polymere, Thermodynamik von Polymerlösungen und Polymermischungen, Grundlagen der Polymerspektroskopie (IR, RAMAN, NMR), Polymernetzwerke, thermische Eigenschaften von Polymeren, Polymerkristallisation
- chemische und physikalische Eigenschaften von amorphen und semikristallinen Polymeren, Darstellung der Eigenschaften der wichtigsten Polymerklassen, präparative Herstellung und Analytik von Polymeren

Inhalte:

- Grundlagen der Chemie der Polymere und Makromoleküle
- physikalische Eigenschaften ausgewählter Polymere

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wolfgang Binder
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 21.03.2012):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Lehramt	Chemie (Gymnasium) 1.	5. oder 7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien	Version 2007				Abschluss
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2006				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2009				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2012				
Master	Erneuerbare Energien 120	1.	Wahlpflichtmodul	Fachnote	5/100
	LP 1. Version 2015				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

sehr gute Kenntnisse der englischen Sprache gute Kenntnisse in der Organischen Chemie

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Übungen	1	15	Wintersemester
Selbststudium	0	15	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

maximale Teilnehmerzahl: 25

Modul: Qualitätssicherung 1 und 2

Identifikationsnummer:

CHE.08009.01

Lernziele:

- Erwerb von Kenntnissen zur Qualitätssicherung

Inhalte:

- Vorlesung 1: Einführung in die Qualitätssicherung, der analytische Prozess, Grundbegriffe der Statistik und Interpretation von analytischen Daten mit mathematisch statistischen Methoden (Chemometrie).
- Vorlesung 2: Validierung analytischer Methoden basierend auf verschiedenen Richtlinien (z.B. ICH guideline Q2(R1)); Planung, Durchführung, Dokumentation sowie Auswertung und Beurteilung von analytischen Methoden anhand von Validierungsergebnissen

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Thomas Heymann
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie 1 Version 2023	1.	5. bis 6.	Pflichtmodul	Fachnote	0/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Qualitätssicherung 1	1	15	Wintersemester
Vorlesung Qualitätssicherung 2	1	15	Sommersemester
Selbststudium	0	120	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen im

Sommersemester

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Qualitätssicherung 3

Identifikationsnummer:

CHE.08010.01

Lernziele:

- Erwerb von Kenntnissen zur Qualitätssicherung

Inhalte:

- Vorlesung 3: Aspekte zur Qualitätssicherung aus der industriellen Sicht, dabei wird der Aufbau von

Qualitätsmanagement-Systemen (z.B. über DIN 9000), das Dokumentenmanagement (SOPs etc.), die Datenverwaltung (z.B. LIMS) sowie allgemeine Grundlagen zur GLP (Umgang mit Laborergebnissen) und GMP vorgestellt

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Dr. Thomas Heymann
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	7.	Pflichtmodul	Fachnote	0/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Qualitätssicherung 3	1	15	Wintersemester
Selbststudium	0	135	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen im

Sommersemester

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Quantenchemie, Wahlpflicht

Identifikationsnummer:

CHE.05350.02

Lernziele:

- Kenntnis und Verständnis von Konzepten zur numerischen Lösung molekularer Mehr-Elektronen-Systeme
- Kenntnis und Verständnis fortgeschrittener Methoden der Quantenchemie
- Erlernen der Prinzipien von Molekulardynamiksimulationen

Inhalte:

- Schrödingergleichung für Mehrelektronensysteme
- Born-Oppenheimer-Näherung
- Pauli-Prinzip, Slaterdeterminanten
- Basisdarstellung und Basissätze für Orbitale
- Hartree-Fock-Ansatz und Dichtefunktionaltheorie
- Hellmann-Feynman-Theorem und Newton%u2019sche Bewegungsgleichungen
- weiterführende theoretische Methoden (Störungstheorie und die Berechnung spektroskopischer Eigenschaften)
- Optimierungsverfahren in der Quantenchemie
- Einführung in eine Programmiersprache (z.B. Python, C, Skriptsprachen)
- Geometrieoptiemierungen von Molekülen
- Energieberechnungen für Mehrelektronensysteme

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Sebastiani
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	5.	Wahlpflichtmodul	Fachnote	5/168
	Version 2021				
Master	Mathematik 120 LP 1.	3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				
Master	Mathematik 120 LP 1.	3.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Physikalische Chemie I und II (PC-I, PC-II), Theoretische Chemie

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Quantenchemie	3	45	Wintersemester
Selbststudium	0	60	Wintersemester
Übung Quantenchemie	1	15	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder elektronische	Klausur oder elektronische	Klausur oder elektronische	
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Strukturanalytik

Identifikationsnummer:

CHE.08000.01

Lernziele:

- Auswahl geeigneter Methoden für verschiedene analytische Fragestellungen

Inhalte:

- Qualitative und quantitative Analytik des Reaktionsverhaltens der Elemente und Stoffgruppen unter besonderer Berücksichtigung von häufig in Lebensmitteln vorkommenden, für den Umweltschutz oder aufgrund der Toxikologie relevanten Elementen
- Qualitätssicherung
- Instrumentelle Analytische Chemie
- Konzentrations- und Strukturanalytik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Wefers
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 07.12.2022):

Studiengang	Studienprogramm (Leistungspunkte)		Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Staatsprüfung	Lebensmittelchemie	1.	4.	Pflichtmodul	keine	
	Version 2023				Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	1	15	Sommersemester
Praktikum	1	15	Sommersemester
Selbststudium	0	120	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Praktikumsbericht	Praktikumsbericht	Praktikumsbericht	0 %
Testat zum Praktikum	Testat zum Praktikum	Testat zum Praktikum	100 %

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens 4 Wochen nach Ende der Lehrveranstaltung

1. Wiederholungstermin: bis spätestens Beginn des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zum Ende des darauf folgenden Semesters

Modul: Technische Chemie für das Nebenfach II (TC-N II)

Identifikationsnummer:

CHE.04217.01

Lernziele:

- quantitatives Verständnis für Gas-Flüssig-Reaktionssysteme
- vertiefte Kenntnis technischer Herstellungsverfahren für wichtige organische und anorganische Zwischenprodukte

Inhalte:

- Prinzipien und Methoden der Technischen Chemie in gas-flüssig Reaktionssystemen (Transport- und Mikromischungseffekte)
- wichtige technisch-chemische Prozesse zur Herstellung von organischen und anorganischen Zwischenprodukten

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master*	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2006				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. oder 2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. oder 2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				
Master	Informatik 120 LP 1.	1. oder 2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Winter- und
			Sommersemester
Selbststudium	0	105	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Technische Chemie für das Nebenfach I (TC-N I)

Identifikationsnummer:

CHE.04216.01

Lernziele:

- generelle Kenntnisse über Prinzipien und Methoden der Technischen Chemie
- Grundkenntnisse zu technologisch wichtigen Herstellungsverfahren

Inhalte:

- Überblick über Prinzipien und Methoden der Technischen Chemie
- Kennenlernen ausgewählter technisch-chemischer Prozesse

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master*	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2006				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. bis 2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	1. bis 2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				
Master	Informatik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				
Master	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Winter- und
			Sommersemester
Selbststudium	0	60	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: <u>Technische Enzymologie</u>

Identifikationsnummer:

CHE.08012.01

Lernziele:

- Erwerb von Kenntnissen zur technische Enzymologie

Inhalte:

- Gärungsvorgänge
- chemischen Veränderungen, die Bakterien, Enzyme und Hefen (siehe Pilze) durch fermentative Stoffwechselvorgänge in organischen Verbindungen bewirken

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	HSL
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 06.12.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	6.	Pflichtmodul	Fachnote	0/70

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in Semester	
		Stunden	
Vorlesung	2	30	Sommersemester
Selbststudium	0	120	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur	Klausur	Klausur	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Vorlesung

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens nach Ende des darauf folgenden Semesters

Modul: Theoretische Chemie (ThC)

Identifikationsnummer:

CHE.00027.04

Lernziele:

- Vermittlung grundlegender Konzepte der elementaren Quantenmechanik
- Vermittlung grundlegender Konzepte der statistischen Thermodynamik
- Behandlung quantenmechanischer Modellsysteme
- Befähigung zur analytischen Lösung von einfachen quantenmechanischen Problemstellungen mit Hilfe von Rechenmethoden der Quantenchemie

Inhalte:

- Wiederholung mathematischer Techniken zur grundlegenden Behandlung quantenmechanischer Probleme
- Einführung von Operatoren und Wellenfunktionen
- Lösung der Schrödingergleichung für das Teilchen im Kasten, den harmonischen Oszillator, den freien Rotator und das Wasserstoffatom
- Grundlegende Konzepte der statistischen Thermodynamik

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Daniel Sebastiani
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 02.03.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Bachelor	Chemie 180 LP 1.	4.	Pflichtmodul	Fachnote	5/168
	Version 2006				
Bachelor	Chemie 180 LP 1.	4.	Pflichtmodul	Fachnote	5/168
	Version 2013				
Bachelor	Chemie 180 LP 1.	4.	Pflichtmodul	Fachnote	5/168
	Version 2021				
Master*	Mathematik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2006				
Master	Mathematik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master	Informatik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				
Master	Informatik 120 LP 1.	2.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				
Master	Mathematik 120 LP 1.	2. oder 4.	Wahlpflichtmodul	Fachnote	0/90
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Modul Physikalische Chemie I und II, Modul Experimentalphysik Export C, Modul Mathematik C

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Theoretische Chemie	3	45	Sommersemester
Selbststudium	0	60	Sommersemester
Übung Theoretische Chemie	1	15	Sommersemester
Selbststudium	0	30	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder elektronische	Klausur oder elektronische	Klausur oder elektronische	
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Toxikologie und Rechtskunde

Identifikationsnummer:

CHE.00035.03

Lernziele:

- Erwerben von Grundkenntnissen der Toxikologie, Einführung in ausgewählte Rechtsgebiete und die Regelungen des europäischen und deutschen Gefahrstoffrechts
- Erwerben der eingeschränkten Sachkunde für das Inverkehrbringen gefährlicher Stoffe und Zubereitungen gemäß Chemikalien-Verbotsverordnung vom 13. Juni 2003

Inhalte:

- Abgrenzung/Gemeinsamkeiten zwischen Industrie-, Umwelt- und Innenraumtoxikologie
- Arbeitsweise und Methoden: In-vivo-Tests, Epidemiologie, In-vitro-Tests, Toxizitätsberechnung
- Untersuchungspraxis: Prüfung der Stofftoxizität, Belastungs- und Beanspruchungs- untersuchungen am Menschen
- Toxikokinetik: Aufnahme, Verteilung und Speicherung, Biotransformation, Elimination von Fremdstoffen
- Toxikodynamik: Struktur-Wirkungs-Beziehungen, Dosis-Zeit-Wirkungs-Beziehungen, Kombinationswirkungen, akute Intoxikationen (einschl. Erste-Hilfe-Maßnahmen), genotoxische Noxen/Kanzerogene
- Lufthygienische Normen und Strategien der Festlegung und Kontrolle
- Grundlegende Regelungen des Grundgesetzes der BR Deutschland, der Europäischen Verträge, des Arbeitsschutzrechtes und des Umweltrechtes unter dem besonderen Aspekt der Gefahrstoffe
- Inhalte des Chemikaliengesetzes, der Gefahrstoffverordnung und der Chemikalien-Verbotsverordnung einschließlich ihrer Anhänge mit Schwerpunkten wie Begriffsbestimmungen, Inverkehrbringen, Gefahrstoffinformationen, Schutzmaßnahmen, Verbote, Beschränkungen, Erlaubnisregelung, straf- und ordnungswidrigkeitenrechtliche Festlegungen
- Wesentliche Inhalte von Rechtsverordnungen, in denen auf den Umgang mit Gefahrstoffen Bezug genommen wird (TRGS, Gesetze des speziellen Gefahrstoffrechtes, Regelungen zur Lagerung und zum Transport, Betriebssicherheitsverordnung, Biozid-Richtlinie u.a.)
- Grundlagen des Jugendarbeitsschutzgesetzes, Rechtliche Aspekte für Abfallverwertung und Recycling, im Umgang mit biologischen oder biologischen Stoffen, Sprengstoffen und Regelungen aus dem Atomgesetz

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. René Csuk
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 01.07.2022):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	3.	Pflichtmodul	keine	
	Version 2023			Benotung	
Bachelor	Chemie 180 LP 1.	4.	Pflichtmodul	keine	
	Version 2006			Benotung	
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	keine	
	Version 2013			Benotung	
Bachelor	Chemie 180 LP 1.	3.	Pflichtmodul	keine	
	Version 2021			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

60 Stunden

Leistungspunkte:

2 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Toxikologie	1	15	Wintersemester
Vorlesung Rechtskunde	1	15	Wintersemester
Selbststudium	0	30	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Klausur (Toxikologie)	Klausur	mündliche Prüfung	50 %
Klausur (Rechtskunde)	Klausur	mündliche Prüfung	50 %

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

siehe Modulleistung: Die Klausuren Rechtskunde und Toxikologie werden nicht benotet. Entsprechend der Bundesrichtlinie für den Erwerb der Sachkunde ist aber mindestens die Hälfte der gestellten Fragen richtig zu beantworten. Nach dem erfolgreichen Abschluss beider Veranstaltungen erhalten die Studierenden gemäß § 5 Abs. 1Nr. 7 der Chemikalien-Verbotsverordnung einen Vermerk im Bachelorzeugnis, der ihnen die "Eingeschränkte Sachkunde für das Inverkehrbringen gefährlicher Stoffe und Zubereitungen (ohne Biozidprodukte und Pflanzenschutzmittel)" bestätigt.

Modul: <u>Umweltchemie</u>

Identifikationsnummer:

CHE.00200.03

Lernziele:

- Beherrschen der Grundlagen der Umweltchemie und Ökotoxikologie
- Anwenden und Beherrschen von Methoden der Umweltforschung

Inhalte:

- Umweltchemie und Ökotoxikologie
- Umweltmedien und Methoden der Umweltforschung
- Umweltmedien, Stoffbezogene Konzepte, Fallbeispiele

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Kai-Uwe Goss
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.01.2023):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an
	(Leistungspunkte)	semester			Abschlussnote
Staatsprüfung	Lebensmittelchemie 1. Version 2023	5. bis 6.	Pflichtmodul	Fachnote	0/70
Bachelor	Management natürlicher Ressourcen 180 LP 1. Version 2006	5.	Wahlpflichtmodul	Fachnote	5/160
Bachelor	Management natürlicher Ressourcen 180 LP 1. Version 2013	5. bis 6.	Wahlpflichtmodul	Fachnote	5/160
Bachelor	Management natürlicher Ressourcen 180 LP 1. Version 2015	5. bis 6.	Wahlpflichtmodul	Fachnote	5/160
Bachelor	Management natürlicher Ressourcen 180 LP 1. Version 2018	5. bis 6.	Wahlpflichtmodul	Fachnote	5/160
Bachelor	Management natürlicher Ressourcen 180 LP 1. Version 2021	5. bis 6.	Wahlpflichtmodul	Fachnote	5/160
Master	Informatik 120 LP 1. Version 2006	1. bis 3.	Wahlpflichtmodul	Fachnote	5/120
Master	Angewandte Geowissenschaften (Applied Geosciences) 120 LP 1. Version 2006	1.	Wahlpflichtmodul	Fachnote	5/120
Master	Physik 120 LP 1. Version 2009	1.	Wahlpflichtmodul	Fachnote	0/70

Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2013				
Master*	Angewandte	1.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2015				
Master	Informatik 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Fachnote	5/120
	Version 2016				
Master	Angewandte	1.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2018				
Master	Physik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	0/70
	Version 2019				
Master	Angewandte	1.	Wahlpflichtmodul	Fachnote	5/105
	Geowissenschaften				
	(Applied Geosciences)				
	120 LP 1. Version 2021				
Master	Informatik 120 LP 1.	1.	Wahlpflichtmodul	Fachnote	5/120
	Version 2023				

^{*} Angaben zum Studienprogramm sind noch nicht verbindlich

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	45	Wintersemester
Vorlesung	2	30	Sommersemester
Selbststudium	0	45	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Zusatzmodul Lebensmittelchemie (Wahlpflicht)

Identifikationsnummer:

CHE.08102.01

Lernziele:

Das Modul soll über die Lebensmittelchemie hinausgehende Kenntnisse vermitteln.

Inhalte:

Unter anderem kann auch aus dem ASQ-Bereich ein Modul mit mindestens 3 SWS gewählt werden.

Verantwortlichkeiten:

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	HSL
II Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 22.06.2023):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Staatsprüfung	Lebensmittelchemie 1.	1. bis 6.	Wahlpflichtmodul	keine	
	Version 2023			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	3	45	Winter- und
			Sommersemester
Selbststudium	0	105	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: am Ende des Semesters

1.Wiederholungstermin: vor Beginn des nächsten Semesters2.Wiederholungstermin: nach Ende des nächsten Semesters